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Hierarchical Models

Powerful technique for describing complex models. Idea is to break the
model down into smaller easier understood pieces, which when put together
describes the joint distribution of all data and parameters

1. Data model: y|x, θy

2. Process model: x|θx

3. Parameter model: θx, θy

Note 1: actually all of the models we have seen so far have been hierarchical,
but most only had two levels to the hierarchy.

Note 2: there may be a hierarchical structure within each piece. For
example, the process model may involve a time series model. So the full
model may involve more than three levels in the hierarchy.
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Note 3: A three level hierarchical model doesn’t have to fit this structure.
For example

yi|µ, σ2 iid∼ N(µ, σ2) i = 1, . . . , n

µ|σ2 ∼ N

(
µ0,

σ2

κ0

)

σ2 ∼ Inv−χ2(ν0, σ
2
0)

This three level approach is a common way of presenting hierarchical models
(Berliner, 2000; Clark, 2005 [on web site]; etc)
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Why go hierarchical?

• Non-hierarchical models with few parameters generally don’t fit the data
well.

• Non-hierarchical models with many parameters then to fit the data well,
but have poor predictive ability (overfitting)

• Hierarchical models can often fit data with a small number of parameters
but can also do well in prediction.

• Hierarchical models with more parameters than data points can be useful
and can give reasonable answers

An example of a hierarchical model is given in McMillan et al (2005)
(Available on the articles page). It describes a predictive model for daily
ground level ozone given meteorology in the Lake Michigan region of the
Midwest.
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1. Data: Zt = maximum of 8 hour average ozone measured at 58 stations,
M = meteorology at 6 locations (daily data).
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2. Process: Ot = true mean maximum 8-hour average ozone over a 10 ×
10 grid (spatial mean taken over grid box).

3. Parameters: measurement error variance (σ2
z), meteorology regression

parameters (β), regression parameters relating true ozone on day t to
true ozone in neighbouring grid boxes on day t − 1 (θ), time varying
mean ozone intercept (µt), ozone process variance (σ2

o)

The form of the model is

1. Data model: Zt = KOt +N(0, σ2
zI) where K is a mapping matrix which

indicates which grid box a measurement was made.

2. Process model:

p(O1:T |M1:T , θo) = p(O0|M0, θo)
T∏

t=1

p(Ot|Ot−1,M1:t, θo)
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where

p(Ot|Ot−1,M1:t, θo) = µt1+H(θ)Ot−1 +G(θ)Bt−1 +Mtβ +N(0, σ2
oI)

µt is modeled as two-regime process: “normal” or typical behaviour
and “high pressure” system behaviour. Conditional on which regime is
active, µt is modeled as a first-order, autoregressive time series with
regime-dependent mean and autoregression parameters. Regime states
and transitions are then modeled as a first order Markov chain, whose
transition probabilities depend on a recursively filtered, areally averaged
air pressure series.

3. Parameter model:

Generally vague priors were put on the parameter values, except for
parameters for which vague prior lead to poor posteriors. This problem
occurred with the H(θ)Ot−1 terms. Also it was necessary to designate
one regime as “normal” and one as “high pressure” through average
ozone observation (needed to specify regime for first day).
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Example: Tumor rates in rats

71 different groups rats. Interest in
the rate of endometrial stromal polyps
in the different groups. The number
of rats varies from group to group.

• Data model: yi = number of
tumors in group i

yi|θi
ind∼ Bin(ni, θi) i = 1, . . . , 71

• Process model: θi = tumor rate in
group i

θi
ind∼ Beta(α, β)

• Parameter model: α, β ∼ p(α, β).
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The idea behind this model, is that we expect similarity behind the tumor
rates in the different groups, but we don’t expect them to be exactly the
same. For example, the experimental conditions won’t be exactly the same
(e.g. different batches of rat chow fed to the different groups, drift over
time, etc)

With a model like this, we can “borrow strength” from the other groups to
come up with better estimates for each of the θi.

If we know α and β, we would expect the θi’s to cluster around α
α+β . There

will be some variation about this (prior variance is αβ
(α+β)2(α+β+1)

). But for

a particular i, how far θi might vary from α
α+β will be influenced by yi and

ni.

However we don’t know α and β. However given the data we can estimate
them.
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Setting up Hierarchical Models

While the Data, Process, Parameter framework is useful, it doesn’t tell you
what distributions to plug into a different problem.

Some parts will be “obvious”, such as yi|θi
ind∼ Bin(ni, θ) in the rat tumor

example.

However, other parts won’t be. For example, in the ozone example is

Zit|Ot, σ
2
z

ind∼ KiOt + N(0, σ2
z)

reasonable.
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Two possible questions may come to mind here

1. Is the independence of the measurements errors, given the truth
reasonable? Independence between the different ozone stations probably
ok. Independence between days for the same station more questionable.
Maybe some correlation between days might be more reasonable. For
many problems, independence of measurement errors is a reasonable
working hypothesis.

2. Is mean zero assumption of the measurement errors reasonable?
Somewhat questionable. No reason to assume a constant ozone surface
across a whole grid box. However if the grid boxes are small enough,
this is probably a reasonable working assumption.
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Exchangeability

A useful assumption in building models, if no information, other than the
data y is available to distinguish any of the θj’s from any of the others, and
no ordering of grouping of the parameters can be made, one must assume
symmetry among the parameters in the prior.

For example, in the rat tumor example, we have no prior reason to assume
that θ70 < θ71 is more likely than θ70 > θ71. In fact, for the information
given, the order that the groups are listed in is meaningless.

So for this problem, it seems reasonable to have the distribution on the
θj’s be exchangeable, i.e. the distribution p(θ1, . . . , θJ) should be invariant
under permutations of the indices (1, . . . , J). If J = 3, then the distributions

p(θ1, θ2, θ3), p(θ1, θ3, θ2), p(θ2, θ1, θ3), p(θ2, θ3, θ1), p(θ3, θ1, θ2), p(θ3, θ2, θ1)

are all of the same form.
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If there is information in the indices about the distributions, exchangeability
is usually not reasonable. Suppose that different pure-bred rat strains were
used for groups 50 to 71 than those used for groups 1 to 49. Then
exchanging indices 49 and 50 would not be reasonable (probably).

Note that exchangeability does not imply independence. For example, the
multivariate normal model

y ∼ Nd(µ1, Σ)

where Var(yj) = σ2 for all i and Corr(yi, yj) = ρ 6= 0 for all i and j, is
exchangeable, but obviously not independent.

Exchangeability implies the marginal distributions for each component are
the same (identically distributed), but nothing about independence. In fact
the dependence between the different components must be the same.

However all iid models are exchangeable.
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One way of getting exchangeable distribution is to take a mixture of iid
distributions.

p(θ|φ) =
J∏

j=1

p(θj|φ)

As φ is usually unknown, the distribution on θ must average over the
uncertainty in φ.

p(θ) =
∫ 


J∏

j=1

p(θj|φ)


 p(φ)dφ

All models of this form are exchangeable. However for finite J , not all
exchangeable models can be written in this form. de Finetti’s theorem
states as J →∞ any well behaved exchangeable distribution can be written
in this form.

One way to think of this approach to get an exchangeable model is to think
of the θj’s as draws from a superpopulation model that is determined by
the hyperparameter φ.
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One way of thinking of exchangeability
is in terms non-informativeness or
ignorance about the random variables.
In the rat example, we have no
preferences for different orderings of
the theta’s. Note these distributions
are not non-informative. For example
in the rat problem, a model like

θi
iid∼ Beta(α, β)

α ∼ U(0, 20)

β ∼ U(0, 20)

is highly informative for θ.
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Inference in Bayesian Model

Suppose we have the following hierarchical model

y|θ, φ ∼ p(y|θ)
θ|φ ∼ p(θ|φ)

φ ∼ p(φ)

The joint prior is
p(θ, φ) = p(φ)p(θ|φ)

and the joint posterior is

p(θ, φ|y) ∝ p(φ)p(θ|φ)p(y|θ, φ)

= p(φ)p(θ|φ)p(y|θ)
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Choice of the hyperprior on φ needs some thought. Often it will be a
non-informative prior. However care needs to be taken, as a improper prior
can lead to a improper posterior. For example, in the ozone example, all
priors are proper. The problem here is that there are more parameters than
data points so an improper prior may lead to problems in this example. (Not
explicitly checked, but the results of the MCMC chain suggests problems)

Of interest in a hierarchical model are posterior predictive distributions.
There are two situations of interest

1. ỹ for an existing θj

2. ỹ for a new θj

The first situation could occur in the rat example. Suppose we had an
addition n rats from group j. Then we would expect ỹ|θj ∼ Bin(n, θj).
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An example of the second situation is the ozone model. The purpose of this
model was to develop a predictive model for ozone on day t + k given the
ozone and meteorology data from days 1 to t and meteorology predictions
for days t + 1 to t + k.
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