
Hierarchical Models II

Statistics 220

Spring 2005

Copyright c©2005 by Mark E. Irwin



Computation in Hierarchical Models

If we want to do exact calculation of the posterior distribution, the following
approach is useful

1. Joint posterior
p(θ, φ|y) ∝ p(φ)p(θ|φ)p(y|θ, φ)

2. Conditional posterior

p(θ|φ, y) ∝ p(θ|φ)p(y|θ, φ)

This will be easy if a conjugate prior is used.

3. Marginal posterior

p(φ|y) =
∫

p(θ, φ|y)dθ
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Sometimes this can be gotten using the relationship

p(φ|y) =
p(θ, φ|y)
p(θ|φ, y)

Using this can be problematic, as the denominator has a normalizing
’constant’ that depends on y and φ.

Often people will pick a prior p(φ) that is conjugate to p(θ|φ), which will
make this step easy. However, as we have seen, conjugate priors aren’t
always available.
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This approach mirrors what is needed for direct simulation.

1. Sample φ1, . . . , φm from p(φ|y)

2. Sample θ1, . . . , θm from p(θ|φi, y)

3. If necessary, sample ỹ. The form of this draw depends on whether the θ
of interest is one corresponding to the dataset or a new one.

Lets take a look at the rat tumors example

• Data model: yi = number of tumors in group i

yi|θi
ind∼ Bin(ni, θi) i = 1, . . . , 71

• Process model: θi = tumor rate in group i

θi
ind∼ Beta(α, β)
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• Parameter model: α, β ∼ p(α, β).

The posterior distributions of interest are

• Joint posterior

p(θ, α, β|y) ∝ p(α, β)p(θ|α, β)p(y|θ, α, β)

∝ p(α, β)
J∏

j=1

Γ(α + β)
Γ(α)Γ(β)

θα−1
j (1− θ)β−1

J∏

j=1

θ
yj

j (1− θ)nj−yj

Note that in this case we need the Γ(α+β)
Γ(α)Γ(β) terms in this (can’t treat it

as a constant and drop it) as α and β are random and have a prior on
them.
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• Conditional posterior

p(θ|α, β, y) =
J∏

j=1

Γ(α + β + nj)
Γ(α + yj)Γ(β + nj − yj)

θ
α+yj−1

j (1− θ)β+nj−yj−1

So conditionally, the θj’s are independent Beta’s.

• Marginal posterior

Given the conjugate structure in the problem, integrating out the θj’s is
easy, giving

p(α, β|y) ∝ p(α, β)
J∏

j=1

Γ(α)Γ(β)
Γ(α + β)

Γ(α + β + nj)
Γ(α + yj)Γ(β + nj − yj)

This does not have a simpler form, but the density can be calculated
easily up to the normalizing constant and can be simulated from.
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In the book, they put following vague prior on α and β

p(α, β) ∝ 1
(α + β)5/2

which comes from putting a uniform prior on

α

α + β
,

1√
α + β

Note that this prior puts large weight on α and β both being small.

Instead, of this, lets put the following independent prior on α and β

α ∼ Unif(0, 20) β ∼ Unif(0, 20)

(this is the same prior used in the previous day’s notes)
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This gives

p(α, β|y) ∝ I(α ≤ 20)I(β ≤ 20)
J∏

j=1

Γ(α)Γ(β)
Γ(α + β)

Γ(α + β + nj)
Γ(α + yj)Γ(β + nj − yj)

α ~ U(0,20), β ~ U(0,20)

log(α β)

lo
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Note that the posterior gets clipped due to the upper limits on α and β.
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So naive implementation of uniform priors can be highly informative.

Lets extend those limits so the choices match the data better.

α ~ U(0,40), β ~ U(0,100)

log(α β)
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Now lets compare the marginal posterior under this prior with the
posterior under the vague prior suggested by the book.

α ~ U(0,40), β ~ U(0,100)
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α ~ U(0,40), β ~ U(0,100)
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So as expected, the vague prior pulls α + β down.
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The posterior means of α and β (as calculated by simulation) are

Prior Vague α ∼ U(0, 20), β ∼ U(0, 20) α ∼ U(0, 40), β ∼ U(0, 100)
α 2.398 2.482 3.448

β 14.291 14.805 20.649

Now we are really interested in the θj, the tumor rates in the different
groups. So we want the determine

p(θ|y) =
∫

p(θ|α, β, y)p(α, β|y)dαdβ

This does not have a nice closed form as integrating α and β is ugly, so we
will have to use simulation.

Computation in Hierarchical Models 11



0.10 0.15 0.20 0.25

0.
10

0.
15

0.
20

0.
25

θj : α ~ U(0,20), β ~ U(0,20)

θ j
:α

 ~
 U

(0
,4

0)
, β

 ~
 U

(0
,1

00
)

0.10 0.15 0.20 0.25

0.
10

0.
15

0.
20

0.
25

θj : Vague Prior
θ j

:α
 ~

 U
(0

,4
0)

, β
 ~

 U
(0

,1
00

)

Computation in Hierarchical Models 12



0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

MLE: 
yi

ni

θ j
:α

 ~
 U

(0
,4

0)
, β

 ~
 U

(0
,1

00
)

Vague
Uniform

In this case the α ∼ Unif(0, 40), β ∼ Unif(0, 100) prior shrinks the
estimates more than the vague prior, though they are shrinking to about
the same place.
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This is supported by the posterior means (as calculated by simulation) for

Prior Vague α ∼ Unif(0, 40), β ∼ Unif(0, 100)
α

α+β 0.144 0.143

α + β 16.689 24.097

For a new group

E[θ|y] = E[E[θ|α, β, y]] = E

[
α

α + β
|y

]

so the two priors seem to be shrinking to the same place.
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For an observed group j,

E[θj|y] = E[E[θj|α, β, y]] = E

[
α + yj

α + β + nj
|y

]

Note that

α + yj

α + β + nj
=

α + β

α + β + nj

α

α + β
+

n

α + β + nj

yj

nj

so this agrees with more shrinking for the uniform prior as the effective
sample size from the prior component (α+β) is larger for the uniform prior.
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