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Normal-Normal Hierarchical Model

Have J independent groups, with known variance σ2

yij|θj
ind∼ N(θj, σ

2), i = 1, . . . , nj; j = 1, . . . , J

Except for the fixed measurement variance, this is the basis for the 1-way
ANOVA model. So following the analysis for this model, the sample mean
for each group be

ȳ.j =
1
nj

nj∑

i=1

yij

Its sampling variance is

σ2
j =

σ2

nj
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So
ȳ.j|θj

ind∼ N(θj, σ
2
j )

For what follows, we are going to base it on the above normal model,
independent observations with (potentially) different but known variances.

Note: In most situations, the assumption of known measurement error
variances is dubious. However it is not always. The book discusses
two examples where assuming that these variances are effective known is
reasonable. Both involve situations where the data to be analyzed comes
from summary measures from analyzes of large data sets.

If this assumption is not reasonable, we can put a prior distribution on σ2.
In this case, the analysis isn’t quite as nice as what follows, but is tractable.
We’ll come back to it in Chapter 15.

Computation in Hierarchical Models 2



We now need a model for θ1, . . . , θJ . A popular choice is

θj|µ, τ2 iid∼ N(µ, τ2)

When combined with the original data model, this gives us the standard
normal random effects model used in ANOVA.

Next we need to put a prior on µ and τ2. While we could put an informative
prior on these, say by following semi-conjugate ideas discussed earlier, lets
follow the text and use a non-informative prior. For many problems fitting
into this framework, the data swamps the prior in the analysis.

One reasonable choice is to have µ and τ2 independent (p(µ, τ2) =
p(µ)p(τ2)). With this, the obvious prior on µ is

p(µ) ∝ 1

i.e. uniform.
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For τ2, one valid choice is
p(τ) ∝ 1

i.e. again uniform.

Note that the Jeffreys’ prior for τ(p(log τ) ∝ 1, p(τ) ∝ 1
τ ) won’t work as it

leads to an improper posterior distribution.

• Joint posterior distribution

p(θ, µ, τ |y) ∝ p(µ, τ)p(θ|µ, τ)p(y|θ)

∝ p(µ, τ)
J∏

j=1

N(θj|µ, τ2)
J∏

j=1

N(θj|µ, τ2)
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• Conditional posterior distribution of the normal means θj

Given the structure of the problem (independence of θj’s given µ and
τ and the independence of the ȳ.j’s given the θj’s), the conditional
posterior p(θ|µ, τ, y) factors into J independent pieces.

Notice that for each θ, this is similar to the case of a single normal mean
with the conjugate prior.

p(θj|µ, τ, y) ∝ p(θj|µ, τ2)p(ȳ.j|θj, σ
2)

∝ N(θj|µ, τ2)N(θj|µ, τ2)

= N(θj|θ̂j, Vj)

where

θ̂j =

1
σ2

j
ȳ.j + 1

τ2µ

1
σ2

j
+ 1

τ2

Vj =
1

1
σ2

j
+ 1

τ2
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• Marginal posterior distribution of the posterior distribution of the
hyperparameters µ and τ

p(µ, τ |y) ∝ p(µ, τ)p(y|µ, τ)

As the book mentions, this decomposition isn’t usually helpful as p(y|µ, τ)
usually doesn’t have a nice form. However for normal-normal model this
can be determined as the integral

p(y|µ, τ) =
∫

p(y, θ|µ, τ)dθ

=
∫

1
σ
√

2π
exp

(
− 1

2σ2
(y − θ)2

)
1

τ
√

2π
exp

(
− 1

2τ2
(θ − µ)2

)
dθ

can be calculated and seen to be nice. Given the quadratic structure of
the exponential piece, it must be a normal distribution. The integration
can be done by completing the square for θ (giving a normal density to
integrate out) or by getting the mean and variance of y|µ, τ by
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E[y] = E[E[y|θ]] = E[θ] = µ

Var(y) = Var(E[y|θ]) + E[Var(y|θ)]
= Var(θ) + E[σ2] = τ2 + σ2

So

p(µ, τ |y) ∝ p(µ, τ)
J∏

j=1

N(θj|µ, σ2
j + τ2)

Note: In the general situation, let φ be the hyperparameter. While the
use of conjugate priors will often given nice forms for p(y|φ), they don’t
combine well with the prior. For example, in the rat tumor example

p(y|α, β) =
(

n

y

)
Γ(α + β)
Γ(α)Γ(β)

Γ(α + y)Γ(β + n− y)
Γ(α + β + n)
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(i.e. the Beta-Binomial distribution). The posterior density can be
calculated (as we did last class), but there isn’t a nice conjugate density
to this distribution which allows for easy calculation in the future steps.

This sort of situation is commonly the case. The reason why things work
nicely for the normal-normal model is that is the conjugate to itself.

Now lets use the fact p(µ, τ) ∝ 1

Similarly to before
µ|τ, y ∼ N(µ̂, Vµ)

where

µ̂ =

∑J
j=1

1
σ2

j+τ2 ȳ.j

∑J
j=1

1
σ2

j+τ2

and V −1
µ =

J∑

j=1

1
σ2

j + τ2
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The marginal posterior of τ |y isn’t quite as nice, though a useful form
for the density can be found, based on the idea

p(τ |y) =
p(µ, τ |y)
p(µ|τ, y)

∝ p(τ)
∏J

j=1 N(ȳ.j|µ, σ2 + τ2)
N(µ|µ̂, Vµ)

As noted before, this must hold for any choice of µ, so pick one to make
this easy to work with. In this case evaluate at µ = µ̂ giving,
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p(τ |y) ∝ p(τ)
∏J

j=1 N(ȳ.j|µ̂, σ2 + τ2)
N(µ̂|µ̂, Vµ)

∝ p(τ)V 1/2
µ

J∏

j=1

1√
σ2 + τ2

exp
(
− (ȳ.j − µ̂)2

2(σ2 + τ2)

)

= V 1/2
µ

J∏

j=1

1√
σ2 + τ2

exp
(
− (ȳ.j − µ̂)2

2(σ2 + τ2)

)

Comment on prior p(τ): As mentioned earlier, the Jeffreys’ prior (p(τ) ∝
τ) leads to an improper posterior. To show this, you can integrate the
density and show that it is infinite. Effectively what is happening is that
their are few degrees of freedom for estimating τ . The Jeffreys’ prior
puts too much weight on larger τs, which leads to the integral to blowup.
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Computation:

As p(τ |y) doesn’t correspond to a standard distribution, analyzing the joint
posterior is usually done by the following simulation scheme

1. Sample τk from p(τ |y)

2. Sample µk from p(µk|τk, y) = N(µk|µ̂k, Vµk
) where

µ̂k =

∑J
j=1

1
σ2

j+τ2
k
ȳ.j

∑J
j=1

1
σ2

j+τ2
k

and V −1
µk

=
J∑

j=1

1
σ2

j + τ2
k

Computation in Hierarchical Models 11



3. Sample θk from p(θk|µk, τk, y). In this case, the individual components
are conditionally independent given µk, τk, and y giving

θj,k ∼ N(θ̂j,k, Vj,k)

where

θ̂j,k =

1
σ2

j
ȳ.j + 1

τ2
k
µk

1
σ2

j
+ 1

τ2
k

Vj,k =
1

1
σ2

j
+ 1

τ2
k

Note the conditional independence of the θjs holds in many hierarchical
model. For example, it also held the rat tumor example. It also holds
for many of the homework problems (e.g. Chapter 5, # 11,12). This
situation will be found to be useful when we get to Gibbs sampling for
doing the calculations.
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Posterior predictive distributions:

There are two situations where the posterior predictive distribution may
need to be calculated. These can be fit into the simulations already done

1. ỹ from a group j already observed.

Sample ỹj,k from N(θj,k, σ
2)

If m observation are needed, draw m values of ỹ from the above
distribution.

2. ỹ from a new group j̃

Sample θj̃,k from N(θ|µk, τk) (draw from prior for θ, not the posterior)

Sample ỹj̃,k from N(θj̃,k, σ
2). Similarly to above if m samples are

needed.

The key difference is do we need to draw a new θ or use one we already
have. The second situation will lead to more variable samples as there is
less information about the corresponding θ in this case.
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Examples

Example 1: Detergent Filling Machines

Six filling machines of the same make and model were examined to see
whether they put the same amount of detergent into a box. 20 observations
from each machine were taken. The nominal amount that should be in a
box is 32 ounces.

1 2 3 4 5 6

31
.8

32
.2

32
.6

Machine

F
ill

 V
ol

um
e
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Note that for this example, σ2
j is unknown, but can be estimated based the

MSE from the 1-way ANOVA. We will proceed with this value (σ2
j = σ2 =

0.00244) is assumed known.

Calculating p(τ |y):

µ̂ =

∑J
j=1

1
σ2

j+τ2 ȳ.j

∑J
j=1

1
σ2

j+τ2

= ȳ.. = 32.228

V −1
µ =

J∑

j=1

1
σ2

j + τ2

Vµ =
σ2 + τ2

6
=

0.00244 + τ2

6
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By plugging these values into

p(τ |y) ∝ p(τ)
∏J

j=1 N(ȳ.j|µ̂, σ2 + τ2)
N(µ̂|µ̂, Vµ)

∝ p(τ)V 1/2
µ

J∏

j=1

1√
σ2 + τ2

exp
(
− (ȳ.j − µ̂)2

2(σ2 + τ2)

)

= V 1/2
µ

J∏

j=1

1√
σ2 + τ2

exp
(
− (ȳ.j − µ̂)2

2(σ2 + τ2)

)

gives p(τ |y).

Lets simulate τ1, . . . , τ5000 based on this unnormalized density.
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Then p(µk|τk, y) = N(µk|µ̂k, Vµk
) is calculated by

µ̂k =

∑J
j=1

1
σ2

j+τ2
k
ȳ.j

∑J
j=1

1
σ2

j+τ2
k

= ȳ.. = 32.228

Vµ =
σ2 + τ2

k

6
=

0.00244 + τ2
k

6

Now sample µ1, . . . , µ5000 based on this conditional distributions.
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E[τ |y] = 0.2020 E[τ2|y] = 0.0518

Mode(τ |y) = 0.143 Mode(τ2|y) = 0.0204

E[µ|y] = 32.228 P [µ > 32|y] = 0.9878
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Now lets sample θj,k from

θj,k ∼ N(θ̂j,k, Vj,k)

where

θ̂j,k =

1
σ2

j
ȳ.j + 1

τ2
k
µk

1
σ2

j
+ 1

τ2
k

Vj,k =
1

1
σ2

j
+ 1

τ2
k

The histograms of these samples are
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This plot suggests that we get some shrinkage in the estimate of the machine
mean fills (posterior means are blue dots) from the sample averages (red
dots). Note that the amount of shrinkage varies from machine to machine.
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Also of interest is which machines have different fill levels. We can answer
this by looking at P [θi < θj|y] for different pairs of machines.

For example [θ1 < θ3|y] = 1, whereas [θ1 < θ5|y] = 0.7508
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Sodium Content in Beer

A study was done to investigate the sodium content of 6 randomly chosen
brands of U.S. and Canadian beer. For each brand, 8 randomly chosen
bottles or cans were analyzed to measure the sodium content (in mg) of
each bottle or can. For this analysis, σ2

j = 0.0895, which again is based on
the MSE from the 1-way ANOVA.
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E[τ |y] = 6.448 E[τ2|y] = 50.847
Mode(τ |y) = 4.61 Mode(τ2|y) = 21.25

E[µ|y] = 17.67 SD(µ|y) = 2.928
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There is much less shrinkage in this example. This is not surprising since τ
appears to be much bigger relative to σ2

j in this example.
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The relationship between the amount of shrinkage and σ2
j and τ2 can be

seen by

E[θi|µ, τ, y] =
τ2

σ2
j + τ2

ȳ.j +
σ2

j

σ2
j + τ2

µ
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