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Model Comparison

There are two situations where comparing models may be reasonable

1. Nested models:

Example:

Model 1 Model 2

yi = β0 + β1xi1 + εi yi = β0 + β1xi1 + β2xi2 + εi

The first model is a special case of the second model (β2 = 0).

In most cases the larger model will fit the data better but can be more
difficult to interpret and compute. Two questions of interest in this
comparison are
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(a) Is the improvement in fit large enough to justify the additional difficulty
in interpretation and computation?

(b) Is the prior distribution on the additional parameters reasonable?

Note: This second question is why I noted that the larger model will
usually fit better, instead of always. A bad prior may bias the fits for
small sample sizes. In a likelihood based analysis, the larger model must
always give a better fit (assuming deviance is the measure of fit).

Standard hypothesis testing methods address the first question in
frequentist analyses. For example, the use of an F -test to compare
two linear regression models.

The approach we will take here is one that measures the distance of the
data to each of the models.

• θ: parameters in first model
• φ: additional parameters in second model

So we want to compare p(θ|y) and p(yrep|y) with p(θ, φ|y) and p(yrep|y)
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2. Non-nested models:

Example:

Model 1 Model 2

yi = β0 + β1xi1 + εi yi = β0 + β2xi2 + εi

In this case, you can’t make one model a special case of the following.

Comparisons of this sort can be useful, if for example, you wish to
compare two regression with different sets predictors to see which one
does better. Maybe for cost considerations you can only afford one
predictor, so you need to figure out which is the best.

Model Comparison 3



Expected Deviance

Last class we discussed the use of

T (y, θ) =
∑

i

(yi − E[yi|θi])2

Var(yi|θi)

as measure of model fit.

Another option, which tends to work better for our purposes is the deviance

D(y, θ) = −2 log p(y|θ)

This has ties to the Kullback-Leibler information

H(θ) =
∫

log
(

f(y)
p(y|θ)

)
f(y)dy

=
∫

log f(y)f(y)dy −
∫

log p(y|θ)f(y)dy
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So

2H(θ) =
∫

D(y, θ)f(y)dy + 2
∫

log f(y)f(y)dy

which implies

E[D(y, θ)] = 2H(θ)− 2
∫

log f(y)f(y)dy

Thus the expected deviance (averaged over the true sampling distribution
f(y)) is twice H(θ) minus a factor that doesn’t depend on θ.

As we have discussed before, as the sample size goes to infinity, our
posterior inference goes to the model with the smallest value of H(θ). So
this suggests using an estimate of the expected deviance as a measure of
overall model fit.
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In using the deviance to measure model fit there are two approaches.

1. Plug in estimate of θ

Dθ̂(y) = D(y, θ̂(y))

where θ̂(y) is an estimate of θ based on the data y, say, for example, the
posterior mean of θ.

2. Average over the posterior realizations of θ

Davg(y) = E[D(y, θ)|y]

which can be estimated using posterior simulations θ1, . . . , θL by

D̂avg(y) =
1
L

L∑

l=1

D(y, θl)
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D̂avg(y) is a better measure of model error since it averages over our
uncertainty about θ.

Dθ̂(y) tends to indicate a better fit than we really have as it calculates the
discrepancy under a more probable θ
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Counting Parameters and Model Complexity

While Dθ̂(y) is not a good measure of model fit, it is an interesting
descriptor as

p
(1)
D = D̂avg(y)−Dθ̂(y)

is a measure of the effective number of parameters in the Bayesian Model.

An alternative measure is

p
(2)
D =

1
2
V̂ar(D(y, θ)|y) =

1
2

1
L− 1

L∑

l=1

(D(y, θl)− D̂avg(y))2

Both of these measures are based on the distribution of D(y, θ), relative to
its minimum, having an asymptotic χ2 distribution. (Note E[χ2

ν] = ν and
Var(χ2

ν) = 2ν.)
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The second of these (p
(2)
D ) is the preferred as the asymptotics should work

a bit better (less worry about bias).

The way to think of pD is a the number of ’unconstrained’ parameters in
the model. A parameter will count as

• 1 if it is completely unconstrained (no information about it in the prior)

• 0 if it is completely constrained (all information about if is in the prior)

• intermediate if information about it comes from the data and the prior
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Deviance Information Criterion

A useful measure for model selection is based on

Dpred
avg (y) = E[D(yrep, θ̂(y))]

where D(yrep, θ̂(y)) = −2 log p(yrep|θ)

This can be estimated by the Deviance Information Criterion (DIC)

DIC = D̂pred
avg (y) = 2D̂avg(y)−Dθ̂(y)

This can be thought of as

DIC = D̂avg(y) + p
(1)
D
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the average deviance plus a penalty term, giving it the same flavour as AIC
(Akaike Information Criterion) and BIC (Bayesian Information Criterion)
used in likelihood analysis

AIC = −2 log p(y|θ̂) + 2K

BIC = −2 log p(y|θ̂) + K log n

where K is the number of parameters in the model

Note that DIC is different than many of the other measures discussed in
that it uses as estimated value for θ instead of averaging the posterior
distribution of θ|y.

Deviance Information Criterion 11



The goal of DIC is use it to predict a model with the best out-of-sample
predictive power. The book motivates DIC by starting with

Dpred
avg (y) = E

[
1
n

n∑

i=1

(yrep
i − E[yrep

i |y])2
]

(This is for normal likelihoods, though the book doesn’t mention it.)

Example: Rat Tumor Rates

Model Dθ̂ D̂avg p
(2)
D DIC

Shrinkage 167.9 253.0 85.1 338.1

Common Theta 343.8 344.8 1 345.8

(Calculated by WinBugs)

So this suggests that the Shrinkage model is a preferable model to the
Common Theta model (as we have already seen).
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mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
theta 0.2 0.0 0.1 0.1 0.2 0.2 0.2 1 5000
a 139.7 5659.1 0.0 0.0 0.3 1.1 58.2 1 3400
b 733.1 29395.6 0.0 0.1 0.4 3.0 328.5 1 3100
u 0.4 0.2 0.1 0.2 0.3 0.5 0.9 1 5000
v 5.2 28.6 0.1 0.5 1.1 2.8 28.1 1 3100
deviance 344.8 1.4 343.8 343.9 344.3 345.1 348.8 1 5000
pD = 1 and DIC = 345.8 (using the rule, pD = var(deviance)/2)

Comment on WinBugs output and Table 6.2 in the text

In WinBugs, as noted in the output, the reported pD = p
(2)
D and DIC =

D̂avg+p
(2)
D , not DIC = D̂avg+p

(1)
D as you get if you follow the development

of the math in the text.

In the table on the previous page, Dθ̂ = D̂avg − p
(2)
D which doesn’t quite

match the books development, which has Dθ̂ = D̂avg − p
(1)
D .
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I suspect that Table 6.2 in the text, which is comparison of 3 Normal
random effects models (SAT coaching example) was calculated by WinBugs

as well as the same relationships between Dθ̂, D̂avg, p
(2)
D , and DIC hold.

Note that these deviations from the books development shouldn’t be very

important as sample sizes increase p
(1)
D and p

(2)
D should approach each other.

Comment of pD

As mentioned earlier, pD can be thought of as a measure of the effective
number of unconstrained parameters in a model. Note that estimates of
this quantity don’t have to be less than the number of actual parameters in
the model.

For example, for the rat tumor example with the shrinkage model, p
(2)
D =

85.1. However the actually number of parameters in the model is 73 (71
θs, α, and β). I suspect (though I’m not sure) that this difference is due to
randomness in the data.
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An analogue would trying to estimate the degrees of freedom in a χ2 test
based on the observed test statistics and an assumption that the data was
really generated under the null hypothesis.
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Bayes Factors

As discussed earlier, Bayes theorem can be thought of in terms of posterior
odds, which satisfies

Posterior Odds = Prior Odds × Likelihood Ratio

Thus the posterior odds of two models H1 and H2 is given by

p(H2|y)
p(H1|y)

=
p(H2)
p(H1)

× p(y|H2)
p(y|H1)

where

p(y|Hi) =
∫

p(θi|Hi)p(y|θi,Hi)dθi
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The ratio of the marginal likelihoods

BF (H2; H1) =
p(y|H2)
p(y|H1)

is known as the Bayes Factor. Its a measure of how much the data favours
model H2 over H1

Note that the Bayes factor is only defined when the marginal likelihood of
each model is proper.

Consider the model

y|θ ∼ N(θ, 1)

p(θ) ∝ 1

Then

p(y) ∝
∫

1√
2π

exp
(
−1

2
(y − θ)2

)
dθ = 1
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Thus marginally y is uniform on (−∞,∞) and thus has an improper
distribution.

(Aside: even though the marginal density on y is improper, the posterior
p(θ|y) is proper as we have seen. It happens that things cancel properly
when going to the posterior.)

Note that the Bayes factor only really make sense when there are a discrete
number of models being investigated.

A good example of where Bayes factor have been used is in genetic
counselling, such as was done for diseases like Huntington’s (an autosomal
dominant trait with the gene on chromosome 4) in the late 80’s and early
90’s.
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H1 = subject is not at risk for disease (not a gene carrier)

H2 = subject is at risk (gene carrier)

y = marker data on subject and relatives and disease status in relatives
(subject is currently unaffected).

Of interest is P [H2|y] or equivalently p(H2|y)
p(H1|y).

As testing was usually done in people with one affected parent, lets assume
that p(H2)

p(H1)
= 1. It will be different if other affection pattern in the family

led to the test. Both parents being affected would raise the prior odds to 3.

The likelihoods under the two situations was calculated using a peeling
algorithm.

With these prior odds, the posterior odds is actually the Bayes factor. I
believe with the standard test of the time, the largest the Bayes factor could
be is about 33 and the smallest is about 1

33 (the marker used was about
3cM from the gene I think).
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Note current technology eliminates the needs for these sorts of calculations
for many diseases. Though not completely. Even though the Huntington
gene (IT-15) has been found, sequenced, and is somewhat understood,
the recent test for this condition isn’t perfect. Thus this sort of analysis
(though) with different sorts of calculations due to the different types of
data.

While Bayes factors can be calculated for models described by continuous
parameter, then tend not to be useful.

For example consider the set of normal based models Hτ

yij|θ ind∼ N(θj, σ
2)

θj
iid∼ N(µ, τ2)

µ ∼ p(µ) (Proper)
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While the Bayes factor is well defined in this case

BF (Hτ ; H0) =
p(y|τ)

p(y|τ = 0)

it not particularly helpful for picking which Hτ is the best model.

Also in these situations, the Bayes factor can break down and become
unstable, particularly when p(µ) is pushed to the limit to approximate an
improper prior.
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