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Simulation of Random Variables

As we’ve seen so far, in performing Bayesian analyzes, being able to sample
from a wide range of distributions is important. However in most computer
languages (e.g. C, Fortran, Pascal, etc) only a very few distributions are
available. Often only uniform generators are available. These can be
supplemented by numerical analysis libraries for common distributions. This
is effectively what happens in most Stat packages (R, SAS, Minitab, etc).

How can we expand past what these libraries allow? How do the routines
in these libraries work?

• Grid approach (seen so far)

• Inverse CDF

• Relationships with other distributions

• Acceptance - Rejection Sampling
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Grid approach

Assume that the random variable X has density p(x).

• Choose an equally spaced grid of values x1:n = x1, . . . , xn

• Evaluate the density for each xi: pi = p(xi) and set p0 = 0

• Normalize the values
p̃i =

pi∑n
j=0 pj

giving a valid discrete probability distribution function on x1:n

• Calculate the CDF for this discrete distribution

P̃i =
i∑

j=1

p̃j ≈ P [X ≤ xi]
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Then to generate a draw x from p(x)

• Sample u ∼ U(0, 1)

• Set x to be xi where P̃i−1 < u ≤ P̃i

Note that this scheme is a mechanism for drawing from any discrete
distribution.

In R this scheme can be implemented using the sample() function.

Advantages:

• Quick and easy

• Will work for any density function

• Easily extended to multivariate densities
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Disadvantages:

• Draws are from an approximation to the true distribution

• How many grid points n. If n is too small this will be a poor
approximation.

• Most values of the random variable can not be generated by this scheme.

So we need alternate schemes for simulating random variables.
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Inverse CDF Method

Let F (x) = P [X ≤ x] be the CDF of the random variable X.
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Then the inverse CDF (or quantile
function) is defined by

F−1(u) = inf{x : F (x) ≤ u}

For continuous RVs

P [F (X) ≤ u] = P [X ≤ F−1(u)] = F (F−1(u)) = u

i.e. F (X) ∼ U(0, 1)
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Thus given and iid U(0, 1) sample u1, . . . , um, an iid sample x1, . . . , xm

from F can be obtained by

xi = F−1(ui)

Examples:

1. Cauchy(µ, σ)

F (x; µ, σ) =
1
2

+
1
π

arctan
(

x− µ

σ

)

F−1(u; µ, σ) = µ + σ tan(π(u− 0.5))

2. Exp(µ)

F (x; µ) = 1− exp(−x/µ)

F−1(u; µ) = −µ log(1− u)
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3. Discrete distributions

The approach discussed earlier for discrete distributions is effectively
inverting the CDF.

Note that sometimes its easier to work with the survivor function S(x) =
1− F (x).

Since U and 1 − U both have uniform distributions S−1(u) will also be a
draw from F . For example

S−1(u; µ) = −µ log u

will also give a draw from an exponential distribution with mean µ.
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Advantages:

• Will give draws from the correct distribution

• Don’t need to worry about things like gridding values.

Disadvantages:

• While the density is not always of a nice form, the CDF and its inverse
often aren’t (e.g. Normal, Gamma, Beta, etc).

• Though there are often good approximation for the quantile function
(e.g. R and Matlab use a rational function approximation), these are
often slow and a poor approximation for simulation purposes (particularly
in the tails of the distribution).

Slightly surprisingly, R uses this approach as the default though there are
4 other methods available.
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• For a discrete distribution with many classes, they may be alot of
comparisons made to determine xk. For example, R doesn’t use this
approach for Binomial draws if np > 30
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Relationships with Other Distributions

Examples:

• X ∼ N(µ, σ2) then Y = eX ∼ LogN(µ, σ2)

• X ∼ N(0, 1) then Y = X2 ∼ χ2
1

• Xα ∼ Gamma(1, α), Xβ ∼ Gamma(1, β) then

Y =
Xα

Xα + Xβ
∼ Beta(α, β)

• X ∼ U(0, 1) then Y = − log X ∼ Exp(1)

The inverse CDF method can be thought of as a special case of this.
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Advantages:

• Will give draws from the correct distribution

Disadvantages:

• Many distributions don’t have useful relationships

• Can be inefficient as functions like log, sin, cos can be somewhat
expensive to calculate
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Acceptance-Rejection
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Due to von Neumann (1951)

Want to simulate from a
distribution with density f(x).

Need to find a “dominating”
or majorizing distribution g(x)
where g is easy to sample from
and

f(x) ≤ cg(x) = h(x)

for all x and some constant c > 1.
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Sampling scheme

1. Sample x from g(x) and compute the acceptance ratio

r(x) =
f(x)
cg(x)

=
f(x)
h(x)

< 1

2. Sample u ∼ U(0, 1)

If u ≤ r(x) accept and return x

If u > r(x) reject and go back to 1)

Note that this step is equivalent to flipping a biased coin with success
probability r(x)

Then the resultant sample is a draw from the density f(x).
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Proof. Let I be the indicator of whether a sample x is accepted. Then

P [I = 1] =
∫

P [I = 1|X = x]g(x)dx

=
∫

r(x)g(x)dx

=
∫

f(x)
cg(x)

g(x)dx =
1
c

Next

p(x|I = 1) =
f(x)
cg(x)

g(x)
/

P [I = 1]

=
f(x)

c
c = f(x)

2
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For a more geometrical proof see
Flury (1990) (on the web site).
Its based on the idea of drawing
uniform points (x, y) under the
curve h(x) and only accepting
the points that also lie under the
curve f(x).

The number of draws needed
until an acceptance occurs is
Geometric(1

c) and thus the
expected number of draws until
a sample is accepted is c.

The acceptance probability satisfies

1
c

=
∫

f(x)dx∫
cg(x)dx

=
Area under f(x)
Area under h(x)
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One consequence of this is that c should be made as small as possible to
minimize the number of rejections.

The optimal c is given by

c = sup
f(x)
g(x)

Note that the best c need not be determined, just one that satisfies

f(x) ≤ cg(x) = h(x)

for all x.
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Example: Generating from the half normal distribution

f(x) = 2φ(x)I(x ≥ 0)

=

√
2
π

exp(−0.5x2)I(x ≥ 0)

Lets use an Exp(1) as the dominating density

g(x) = e−xI(x ≥ 0)

The optimal c for this example is

c =

√
2
π

exp(0.5) ≈ 1.315

so the acceptance rate is approximately 76%
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This the acceptance-rejection scheme is

1. Draw x ∼ Exp(1)

r(x) = exp(−0.5(x− 1)2)

2. Draw u ∼ U(0, 1)

If u ≤ r(x) accept and return x

If u > r(x) reject and go back to 1)
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Note that this scheme isn’t
needed as the half normal
distribution is the distribution of
the absolute value of a N(0, 1)

In the above, it was assumed that
f(x) was a density function. In
fact f(x) only needs to be known
up to a multiplicative constant

l(x) = bf(x)

where b may be unknown.

This is common in our situation
as the posterior density is usually
only known up to

p(θ|y) ∝ p(y|θ)p(θ)

and the normalizing constant is difficult to calculate exactly.
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However the acceptance-reject approach does not require knowing this
constant. The procedure can be modified to

Find a c such that
l(x) ≤ cg(x) = h(x)

for all x and c > 1.

1. Sample x from g(x) and compute the ratio

r(x) =
l(x)
cg(x)

=
l(x)
h(x)

≤ 1

2. Sample u ∼ U(0, 1)

If u ≤ r(x) accept and return x

If u > r(x) reject and go back to 1)

Everything is the same except the unnormalized density l(x) is used instead
of the normalized density f(x).
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The acceptance probability for this scheme is b
c.

In addition to the constant c chosen, the distribution g(x) will also affect
the acceptance rate. (c is chosen conditional on g(x)).

A good choice g(x) will normally be “close to” f(x). You want to minimize
the separation between the two densities.

Often a parametric family will be chosen and the member of the parametric
family with the smallest c will then be used.
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For example, for the half normal distribution, which Exp(µ) will minimize
c(µ)
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In fact µ = 1 will minimize c(µ) for this problem.
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Note that so far its appeared that this has focused on continuous random
variables.

In fact acceptance-rejection works fine with discrete random variables and
with variables with more than one dimension.

The proof presented earlier goes through in this more general setting by
replacing integration over a density to integration over a more general
measure.

For discrete problems, you get a sum over the probability mass function.

With higher dimensional problems, the majorization constants (i.e. the cs)
tend to be higher, implying the procedure is less efficient.
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Advantages:

• Will give draws from the correct distribution.

• Extremely flexible.

• Approach will work for a wide range of problems.

• For many problems there are good choices for the majorizing distribution
(i.e. log concave densities).

Disadvantages:

• Maybe inefficient (large c).

• How to pick majorizing distribution not always clear.
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