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Acceptance-Rejection and Log-concave Densities
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The is one class of distributions
where it is easy to to set up an
acceptance-rejection scheme.

It is the case when the log of the
density function is concave on the
support of the distribution.

If f(x) is log concave, any
tangent line to log f(x) will lie
above log f(x) (call it l(x) =
a + bx).

Thus h(x) = el(x) = eaebx lies
above f(x). Note that this looks like a scaled exponential density.

This suggests that exponential distributions can be used as the majorizing
distribution.
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A strictly log concave density is
unimodal. The mode may occur
at an endpoint or in the middle.

If the mode occurs at an endpoint,
a single exponential can be used
(as with the half normal example).

If the mode occurs in the middle
of the range, two exponential
envelopes are needed, one for left
of the mode, the other for right
of the mode).
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Example: Gamma(2,1)

The mode for a Gamma is α−1
β (so 1 for this example). So lets use shifted

exponentials starting at the mode of 1.
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• Left side:

gl(x) =
1
µl

exp((x− 1)/µl)I(x < 1)

• Right size:

gr(x) =
1
µl

exp(−(x− 1)/µl)I(x ≥ 1)
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The choice of µl and µr depend
on where you want the majorized
densities gl(x) and gr(x) to be
tangent to f(x).

Lets set xl = 0.5 and xr = 2 as
the tangent points.

The total area under

h(x) = clgl(x) + crgr(x)

is c = cl + cr.
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For the example, cl = 0.5 and cr = 0.8925 so the rejection rate for this
sampler is just under 30%.

To determine which exponentials to use, solve the system (for given xl and
xr

f(xl) = clgl(xl) f(xr) = clgr(xr)

f ′(xl) = clg
′
l(xl) f ′(xr) = clg

′
r(xr)

Solving this gives

λl = f ′(xl)
f(xl)

λr = −f ′(xr)
f(xr)

cl = (f(xl))
2

f ′(xl)
e−λl(xl−m) cr = −(f(xr))

2

f ′(xr)
eλl(xr−m)

where m is the mode of f(x) and λi = 1
µi

The optimal choices for xl and xr can be found by minimizing cl and cr

separately.
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Implementing the proposal distribution

The majorizing distribution g(x) is a mixture distribution

g(x) =
cl

cl + cr
gl(x) +

cr

cl + cr
gr(x)

So for the proposal x, you want to sample from gl(x) with probability cl
cl+cr

and from gr(x) with probability cr
cl+cr

.

This can be implemented by

1. Draw v ∼ U(0, 1)

2. If v < cl
cl+cr

draw y ∼ Exp(µl) and set x = m− y.

else

draw y ∼ Exp(µr) and set x = m + y
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Discrete Log-concave Distributions

Let X be a random variable defined on the non-negative integers. In this
case, log-concave is defined as

log f(x) ≥ 1
2

[log f(x− 1) + log f(x + 1)]

which is equivalent to

(f(x))2 ≥ f(x− 1)f(x + 1)
for all integers x,

A possible majorizing distribution in the discrete case is the geometric
distribution with

g(x) = p(1− p)x x = 0, 1, 2, . . .

(See Lange for further details, particularly on pl, pr, xl, xr)
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Markov Chain Monte Carlo (MCMC)

Instead of generating independent samples, generate dependent samples via
a Markov Chain

θ0 → θ1 → θ2 → θ3 → . . .

where the stationary distribution of the chain is the desired distribution
p(θ).

The Markov Chain is defined by a transition distribution Tt(θt|θt−1), which
describes the possible moves when you are in state θt−1

Useful for a wide range of problems.

Popular for Bayesian analyses, but it is a general sampling procedure. For
example, it has been used for calculating likelihoods in genetic linkage
analysis.
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Gibbs Sampling

One example of MCMC

Idea: Break the random variable θ in k pieces (θ = {θ1, θ2, . . . , θk}) and
sample the pieces sequentially. (The pieces θi could be univariate or
multivariate.)

1. Initialize chain: θ0 = {θ0
1, θ

0
2, . . . , θ

0
k} by some mechanism.

2. At time t, sample θt = {θt
1, θ

t
2, . . . , θ

t
k} by

• Step 1: sample θt
1 ∼ p(θ1|θt−1

2 , . . . , θt−1
k )

• Step 2: sample θt
2 ∼ p(θ2|θt

1, θ
t−1
3 . . . , θt−1

k )

• Step j: sample θt
j ∼ p(θj|θt

1, . . . , θ
t
j−1, θ

t−1
j+1 . . . , θt−1

k )

• Step k: sample θt
k ∼ p(θk|θt

1, . . . , θ
t
k−1)
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Under certain regularity conditions, the realizations θ1, θ2, θ3, . . . form a
Markov chain with stationary distribution p(θ). Thus the realizations can
be treated as dependent samples from the desired distribution.

Example: Nuclear Pump Failure

Gaver & O’Muircheartaigh (Technometrics, 1987)

Gelfand & Smith (JASA, 1990)

Observed 10 nuclear reactor pumps and counted the number of failures for
each pump.
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Pump Failures (si) Observation Time (ti) Observed Rate (li)

1 5 94.320 0.053

2 1 15.720 0.064

3 5 62.880 0.080

4 14 125.760 0.111

5 3 5.240 0.573

6 19 31.440 0.604

7 1 1.048 0.954

8 1 1.048 0.954

9 4 2.096 1.910

10 22 10.480 2.099

Observation time in 1000’s of hours

Observed Rate = # Failure / 1000 hours
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Want to determine the true failure rate for each pump with the following
hierarchical model

si|λi
ind∼ Poisson(λiti)

λi|β iid∼ Gamma(α, β)

β ∼ Gamma(γ, δ)

Note that this is a slightly different parameterization but the same model
that Gelfand and Smith used.

In this example, α will be assumed to be a fixed parameter. We could be a
prior on it, or as Gelfand and Smith do, estimate it from the data and take
and empirical Bayes solution.
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Want to determine the following posterior distributions

1. p(λi|s) for each pump

2. p(β|s) and p
(

1
β |s

)

Note the both sets of these distributions are difficult to get analytically. It
is possible to show that

p(λ|s) ∝ 1
(δ +

∑
λi)10α+γ

∏ tα+si
i λα+si−1e−λiti

Γ(α + si)

Note that the λ’s are correlated and trying to get the marginal for each
looks to be intractable analytically.

Instead lets run a Gibbs sampler to determine p(λ, β|s) from which we can
get the desired posteriors.
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One possible Gibbs scheme is

• Step 1: sample λ1 ∼ p(λ1|λ(−1), β, s)

• Step 2: sample λ2 ∼ p(λ2|λ(−2), β, s)

· · ·

• Step 10: sample λ10 ∼ p(λ10|λ(−10), β, s)

• Step 11: sample β ∼ p(β|λ, s)

where λ(−j) = {λ1, . . . , λj−1, λj+1, . . . , λ10}
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Need the following conditional distributions

λj ∼ p(λj|λ(−j), β, s) = p(λj|β, sj)

= Gamma(α + sj, β + tj)

β ∼ p(β|λ, s) = p(β|λ)

= Gamma(γ + 10α, δ +
∑

λ)

These can be gotten from the joint distribution by including only the terms
in the product that contain the random variable of interest

p(s, λ, β) =

(
10∏

i=1

(λiti)sie−λiti

si!

)(
10∏

i=1

λα−1
i βαe−λiβ

Γ(α)

)
βδ−1γδe

−βδ

Γ(γ)
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Equivalently, you can do this by looking at the graph structure of the model
by only including terms that correspond to edges joining to the node of
interest. (e.g. for β, which edges connect with the node for β.)

In these graphs, for every factor of the joint distribution, the nodes for the
variables in the factor are joined.

p(s, λ, β) =

(
10∏

i=1

(λiti)sie−λiti

si!

)(
10∏

i=1

λα−1
i βαe−λiβ

Γ(α)

)
βδ−1γδe

−βδ

Γ(γ)
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Example Run:

The following values were used for the prior parameters

α = 1.8 δ = 1 γ = 0.1

n = 10000 imputations were generated after a burn in of 1000 imputations.

The starting values for the chain were β0 = l̄ = 1.33, λi = li.

Simulation of Random Variables 17



Pump 1

λ1

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
5

10
15

Pump 7

λ7

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

Pump 10

λ10

D
en

si
ty

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pump 2

λ2

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

Pump 8

λ8

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

Beta

β

D
en

si
ty

1 2 3 4 5 6
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6

Simulation of Random Variables 18



Pump li ti E[λi|s] Med(λi|s) SD(λi|s)
1 0.0530 94.320 0.0700 0.0667 0.0267

2 0.0636 15.720 0.1553 0.1368 0.0935

3 0.0795 62.880 0.1044 0.0991 0.0401

4 0.1113 125.760 0.1231 0.1204 0.0307

5 0.5725 5.240 0.6283 0.5861 0.2914

6 0.6043 31.440 0.6167 0.6071 0.1343

7 0.9541 1.048 0.8298 0.7188 0.5379

8 0.9541 1.048 0.8316 0.7178 0.5302

9 1.9083 2.096 1.3020 1.2150 0.5744

10 2.0992 10.480 1.8358 1.8087 0.3873

E

[
α

β
|s

]
= 0.7929

E[β|s] Med(β|s) SD(β|s)
2.4678 2.3970 0.7074
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