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Conditions for Gibbs Sampling to Work

While you can always run the chain, it may not give the answer you want.
That is, the realizations may not have the desired stationary distribution.

• One-step transitions: p(θ|θ0)

• n-step transitions: pn(θ|θ0)

• Stationary distribution: π(θ) = limn→∞ p(θ|θ0)

If the stationary distribution exists, it satisfies

π(θ) =
∫

p(θ|φ)π(φ)dφ
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A stronger condition which shows that p(θ) is the density of the stationary
distribution is

π(θ)p(φ|θ) = π(φ)p(θ|φ)

holds for all θ and φ (detailed balance).

Note that detailed balance =⇒ stationarity but stationarity doesn’t imply
detailed balance.

If the following two conditions hold, the chain will have the desired stationary
distribution.

1. Irreducibility: The chain generated must be irreducible. That is it is
possible to get from each state to every other state in a finite number of
steps.

Not all problems lead to irreducible chains.
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Example: ABO blood types

The children’s data implies that the child with blood type AB must have
genotype AB and that the child with blood type O must have genotype
OO.

The only possible way for the two children to inherit those genotypes is
for one parent to have genotype AO and for the other parent to have
genotype BO. However it is not possible to say which parent has which
genotype with certainty. By a simple symmetry argument

P [Dad = AO & Mom = BO] = P [Dad = BO & Mom = AO] = 0.5
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Lets try running a Gibbs sampler on this data to get the distribution of
genotypes for the two parents, by first generating mom’s genotype given
dad’s and then dad’s given mom’s. Let start the chain with Dad = AO.

• Step 1: Generate Mom

P [Mom = AO|Dad = AO] = 0

P [Mom = BO|Dad = AO] = 1

so Mom = BO.

• Step 2: Generate Dad

P [Dad = AO|Mom = BO] = 1

P [Dad = BO|Mom = BO] = 0

so Dad = AO.

This implies that every realization of the chain has Mom = BO & Dad
= AO.
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If the chain is started with Dad = BO, every realization of that chain
will have Mom = AO & Dad = BO.

The reducible chain in this case does not have the correct stationary
distribution. (Well reducible chains don’t really have stationary
distributions anyway). But running the described Gibbs sampler will
not correctly the describe the distribution of the mother and father’s
genotypes.

2. Aperiodicity: Don’t want a periodic chain (e.g. certain states can only
occur on when t is even say)

This violates the idea that each state has a long run frequency marginally.
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Starting Points

For every chain you need to specify a starting point. There are a number of
approaches for choosing this.

1. Prior means

In pump example, set β0 = E[β] = δ
γ .

2. Estimate from data

In pump example, E[li] = α
β , so set β0 = α

l̄
.

3. Sample from prior (or some other distribution)

This idea can be combined with other ideas, such as sampling around a
data based estimate.

4. Ad hoc choices

In pump example, set β0 = ∞ or β0 = 0
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5. Multiple Starting Points

You do not need to use a single run for your chain. Instead you can
run multiple chains with different starting values and then combine the
samples for you analysis. WinBugs allows to this and Andy Gelman’s
RBugs front end to WinBugs requires at least two chains to be run to
check for convergence of the chains.

For simpler problems, it can be useful to start from well dispersed starting
points as it is easier to check to see if the chains have converged and
adaquately covered the sample space. If the starting points are similar it
can be hard to determine whether similar results for each chain are due
to convergence of the chain or whether its a slow moving chain and none
of the chains have moved far from there starting points.

For many problems, the choice of starting values can be important. The
stationary distribution is an asymptotic property and it may take a long
time for the chain to converge.
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Starting with β0 = ∞ (actually 10100), the initial draws are not consistent
with the stationary distribution seen later in the chain.

While for this example, the problem clears up quickly, for other problems it
can take a while.

This is more common which larger problems, that might have millions,
or maybe billions of variables being sampled in a complete single scan
through the data. This can occur with large space time problems, such
as the Tropical Pacific sea surface temperature predictions discussed at
<http://www.stat.ohio-state.edu/∼sses/collab enso.php>.
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April 2004 anomaly forecast (top) and observed anomaly (bottom)
based on Jan 1970 to September 2003 data.
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The usual approach to eliminate a poor choice of starting values is to have
a “burn-in” period where the initial samples are thrown away since they
may not be representative of samples from the stationary distribution.

This was done in the SST example where the first 1000 imputations from a
total run of 11000 imputations were discarded.

The following table contains estimates of the posterior means of the 11
parameters in the pump example with 3 different starting points. The first
200 imputations were discarded and then the next 1000 imputations were
sampled.
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Pump β0 = α
l̄

β0 = 0 β0 = ∞
1 0.0716 0.0694 0.0692

2 0.1575 0.1508 0.1496

3 0.1037 0.1029 0.1039

4 0.1248 0.1230 0.1220

5 0.6099 0.6273 0.6023

6 0.6162 0.6152 0.6145

7 0.8192 0.8374 0.7907

8 0.8285 0.8301 0.7902

9 1.2651 1.3187 1.2341

10 1.8609 1.8609 1.8105

β 2.5148 2.4363 2.5665
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Often the bigger the problem, the longer the burn-in period desired. However
those are the problems where time considerations will limit the total number
of imputations that can be done. So you do want to think about starting
values for your chain.
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Gibbs sampling and Bayes - Choice of priors

For Gibbs sampling to be efficient, the draws in each step of the procedure
need to be feasible.

That suggests that conjugate distributions need to be used as part of the
hierarchical model, as was done in the pump example.

However conjugacy is not required, as rejection sampling with log-concave
distributions might be able to be used in some problems.

This idea, and others which probably won’t be discussed, are sometimes
used in the software package WinBUGS. However for some problems the
model you want to analyze is not conjugate and the tricks to get around
non-conjugacy won’t work. For example, lets change model for the pump
example to
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si|λi
ind∼ Poisson(λiti)

λi|µ, σ2 iid∼ LogN(µ, σ2)

µ ∼ Logistic(1, 100)

σ2 ∼ Weibull(1, 100)

Good luck on writing down a simple Gibbs sampler on this model (I think).
However, WinBugs will handle it (and it gives similar answers for the λ’s,
though there is less shrinkage due the the more diffuse prior).

Other sampling techniques are needed for more complicated problems.
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Metropolis - Hastings Algorithm

A general approach for constructing a Markov chain that has the desired
stationary distribution p(θ).

1. Proposal distribution: Assume that a time t − 1 the chain is at θt−1.
Need to propose a new state θ∗ for time t with distribution J(θ|θt−1).

2. Calculate the Hastings’ ratio

r =
p(θ∗)J(θt−1|θ∗)

p(θt−1)J(θ∗|θt−1)

3. Acceptance/Reject step

Generate u ∼ U(0, 1) and set

θt =

{
θ∗ if u ≤ min(r, 1)
θt−1 otherwise
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Notes:

1. Gibbs sampling is a special case of M-H as for each step,

r =
p(θ∗)J(θt−1|θ∗)

p(θt−1)J(θ∗|θt−1)
= 1

which implies the relationship also holds for a complete scan through all
the variables.

2. The Metropolis (Metropolis et al, 1953) algorithm was based on a
symmetric proposal distribution J(θ∗|θt−1) = J(θt−1|θ∗)

r =
p(θ∗)

p(θt−1)

So a higher probability state will always be accepted.
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3. As with many other sampling procedures, p(θ) and J(θ∗|θt−1) only need
to be known up to normalizing constants as they will be cancelled out
when calculating the Hastings’ ratio.

4. Periodicity isn’t a problem usually. For many proposals, J(θt−1|θt−1) >
0. Also if r < 0 for some combinations of θt−1 and θ∗, P [θt =
θt−1|θt−1] > 0, thus some states have period 1, which implies the chain
is aperiodic.

5. Detailed balance is easy to show.

6. The big potential problem is irreducibility. However by setting the
proposal J to correspond to a irreducible chain solves this.
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Proposal distribution ideas:

1. Approximate the distribution. For example use a normal with similar
means and variances. Or use a t with a moderate number of degrees of
freedom.

2. Random walk
J(θ∗|θt−1) = q(θ∗ − θt−1)

If there is a continuous state process, you could use

θ∗ = θt−1 + ε; ε ∼ q(·)

3. Autoregressive chain

θ∗ = a + B(θt−1 − a) + ε; ε ∼ q(·)
For the random walk and autoregressive chains, q does not need to
correspond to a symmetric distribution (though that is common).

Metropolis - Hastings Algorithm 19



4. Independence sampler

J(θ∗|θt−1) = q(θ∗)

For an independence sampler you want q to be similar to p.

r =
p(θ∗)q(θt−1)
p(θt−1)q(θ∗)

If they are too different, q(θt−1)
p(θt−1)

could get very small, making it difficult

to move from state θt−1. (The chain mixes slowly).
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5. Block at a time

Deal with variables in blocks like the Gibbs sampler. Sometimes referred
to Metropolis within Gibbs.

Allows for complex problems to be broken down into simpler ones.

Any M-H style update can be used within each block (e.g. random walk
for one block, independence sampler for the next, Gibbs for the one after
that).

Allows for a Gibbs style sampler, but without the worry about conjugate
distributions in the model to make sampling easier.
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Pump Example:

si|λi
ind∼ Poisson(λiti)

λi|µ, σ2 iid∼ LogN(µ, σ2)

µ ∼ N(δ, τ2)

σ2 ∼ Inv−χ2(ν, γ)

Can perform Gibbs on µ and σ2 easily, but not on λ, due the non-conjugacy
of the Poisson and log Normal distributions.
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Step i, i = 1, . . . , 10 (M-H):

Sample λi from λi|s, µ, σ2 with proposal λ∗i ∼ logN(λi, θ
2) (Multiplicative

random walk)

r =
(λ∗i ti)

sie−λ∗i ti 1
λ∗i σφ

(
log λ∗i−µ

σ

)

(λiti)sie−λiti 1
λiσ

φ
(

log λi−µ
σ

) ×
1

λiθ
φ

(
log λi−λ∗i

θ

)

1
λ∗i θφ

(
log λ∗i−λi

θ

)

=
(

λ∗i
λi

)si

e−(λ∗i−λi)ti

φ
(

log λ∗i−µ

σ

)

φ
(

log λi−µ
σ

)
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Step 11 (Gibbs): Sample µ from µ|λ, σ2, δ, τ2 ∼ N(mean, var) where

mean = var
(

1
σ2

∑
log λi +

δ

τ2

)

var =
(

n

σ2
+

δ

τ2

)−1

Step 12 (Gibbs): Sample σ2 from

σ2|λ, µ, ν, γ ∼ Inv−χ2
(
ν + n, γ +

∑
(log λi − µ)2

)
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