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Metropolis - Hastings Example

Pump Example:

si|λi
ind∼ Poisson(λiti)

λi|µ, σ2 iid∼ LogN(µ, σ2)

µ ∼ N(δ, τ2)

σ2 ∼ Inv−χ2(ν, γ)

Can perform Gibbs on µ and σ2 easily, but not on λ, due the non-conjugacy
of the Poisson and log Normal distributions.
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Step i, i = 1, . . . , 10 (M-H):

Sample λi from λi|s, µ, σ2 with proposal λ∗i ∼ logN(λi, θ
2) (Multiplicative

random walk)

ri =
(λ∗i ti)

sie−λ∗i ti 1
λ∗i σφ

(
log λ∗i−µ

σ

)

(λiti)sie−λiti 1
λiσ

φ
(

log λi−µ
σ

) ×
1

λiθ
φ

(
log λi−λ∗i

θ

)

1
λ∗i θφ

(
log λ∗i−λi

θ

)

=
(

λ∗i
λi

)si

e−(λ∗i−λi)ti

φ
(

log λ∗i−µ

σ

)

φ
(

log λi−µ
σ

)

Metropolis - Hastings Example 2



Step 11 (Gibbs): Sample µ from µ|λ, σ2, δ, τ2 ∼ N(mean, var) where

mean = var
(

1
σ2

∑
log λi +

δ

τ2

)

var =
(

n

σ2
+

δ

τ2

)−1

Step 12 (Gibbs): Sample σ2 from

σ2|λ, µ, ν, γ ∼ Inv−χ2
(
ν + n, γ +

∑
(log λi − µ)2

)
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Parameters for run:

• Burn-in: 1000

• Imputations: 100,000

• δ = −50

• τ2 = 100

• ν = 2

• γ = 100

• θ = 0.1
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Starting values:

• λi = li

• µ = 1
10

∑
log li

• σ2 = 1
9

∑
log(li − µ)2
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Other sampler options:

1. Combine steps 1 - 10 into a single draw.

r =
10∏

i=1

ri =
10∏

i=1

(
λ∗i
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)si
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φ
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σ

)

φ
(
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σ

)

With this option all λ’s change or none do. In the sampler used, whether
each λi changes is independent of the other λ’s.

The option used is probably preferable, as it should lead to better mixing
of the chain.

2. Combine sampling λ, µ, and σ2 into a single M-H step. Probably
suboptimal as the proposal distribution won’t be a great match for the
joint posterior distribution of λ, µ, and σ2.
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Rejection Rates

Having some rejection can be good.

With the multiplicative random walk sampler used, if θ2 is too small, there
will be very few rejections, but the sampler will move too slowly through
the space.

Increasing θ2 will lead to better mixing, as bigger jumps can be made,
though it will lead to higher rejection rates.

You need to find a balance between rejection rates, mixing of the chain,
and coverage of the state space.

For some problems, a rejection rate of 50% is fine and I’ve seen reports for
large problems using normal random walk proposals the rejection rates of
75% are optimal.

The book recommends rejections rates around 80% (when altering a vector
of parameters) and 60% (when altering one parameter at a time).
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Rejection rates under different random walk standard deviations

Parameter θ = 0.001 θ = 0.01 θ = 0.1 θ = 0.2
λ1 0.00093 0.00947 0.07067 0.13899

λ2 0.00005 0.00373 0.03015 0.05986

λ3 0.00008 0.00713 0.06990 0.13774

λ4 0.00032 0.01225 0.11783 0.22687

λ5 0.00017 0.00376 0.05352 0.10601

λ6 0.00097 0.01217 0.13792 0.26114

λ7 0.00017 0.00346 0.03036 0.05523

λ8 0.00007 0.00231 0.02806 0.05822

λ9 0.00046 0.00633 0.06073 0.12077

λ10 0.00057 0.01332 0.14533 0.27805

µ 0.00000 0.00000 0.00000 0.00000

σ2 0.00000 0.00000 0.00000 0.00000
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Parameter θ = 0.001 θ = 0.01 θ = 0.1 θ = 0.2 Gibbs

λ1 0.0755 0.0335 0.0538 0.0531 0.0534

λ2 0.0559 0.1089 0.0606 0.0646 0.0665

λ3 0.0775 0.0718 0.0804 0.0801 0.0796

λ4 0.1124 0.1188 0.1122 0.1111 0.1111

λ5 0.6817 0.5501 0.5651 0.5565 0.5603

λ6 0.5066 0.5982 0.6020 0.6033 0.6019

λ7 0.6452 0.1460 0.9281 0.8702 0.8889

λ8 1.0675 1.0572 0.8023 0.8949 0.8902

λ9 2.5088 1.5289 1.8545 1.7993 1.8553

λ10 2.0121 2.1340 2.0880 2.0876 2.0856

µ -2.2718 -2.6757 -2.5723 -2.5381 -2.5405

σ2 26.6847 27.1960 27.3542 27.1282 27.2422
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Inference and Assessing Convergence

With iterative sampling schemes, it may not be clear that we are getting
the correct answer from our sampler. Two problems are

1. Has the chain run long enough to get into the stationary distribution and
adequately cover the sample space.

For example, in the pump example, for the smaller random walk standard
deviations, θ, the chains had not covered the sample space well. For
θ = 0.001, clearly the chain had problems. However when θ = 0.2,
things are much better.
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The starting values for λi are li ∗ logN(0, 1). For λ1, l1 = 0.053 so
the starting values are drawn from a positively skewed distribution with
mean = 0.087, median = 0.053, and standard deviation = 0.115.
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2. Within sample auto-correlation.

Assume that Corr(Xt, Xt+j) = ρj. Then

Var(x̄) =
σ2

n


1 +

n−1∑

j=1

n− j

n
ρj




As MCMC samplers tend to have positive autocorrelations, estimating
the posterior mean of a distribution by the average of the sampler will
usually be less efficient than an independent sampler. So the effective
sample size is often less than we used in the simulation.

So to get the same level of accuracy, we need to simulate more realizations
than with an independence sampler. If space is a concern, thin the
sequence, keeping every kth realization from the chain.
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Monitoring Convergence

To monitor convergence of sampler, we can compare multiple chains to see
if they are acting similarly. If they are, it suggests that the chains have
converged to there stationary distributions.
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While graphs are useful, we also want numeric summaries to compare the
m ≥ 2 chains.
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Analysis of convergence is often done on scalar quantities, either individual
parameters or functions of parameters.

The idea is to see if the variability between the chains is similar to the
variability within the chains.

Assume there are m ≥ 2 chains with n values kept from each chain
after removing the burn in part and thinning the remaining values. Let
ψij; i = 1, . . . , n, j = 1, . . . , m be the scalar of interest.

Let B and W be the between and within sequence variances of ψij

B =
n

m− 1

m∑

j=1

(ψ̄.j − ψ̄..)2 W =
1
m

m∑

j=1

s2
j
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The marginal posterior variance Var(ψ|y) can be estimated by

V̂ar
+
(ψ|y) =

n− 1
n

W +
1
n
B

This quantity will overestimate Var(ψ|y) if the starting points are
overdispersed, but is unbiased if the draws are from the stationary
distribution or in the limit as n → ∞. This estimate is analogous to
the variance estimate in a cluster sample.

However W should be an underestimate of Var(ψ|y) as for finite n, each
chain will not have covered the whole sample space. However as n → ∞
W is a consistent estimate of Var(ψ|y).
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Thus we can monitor convergence by comparing V̂ar
+
(ψ|y) with W . If

they are similar, it suggests that the chains have converged. On comparison
that can be done is by

R̂ =

√
V̂ar

+
(ψ|y)

W

which declines to 1 as n →∞.

Thus if R̂ is large, it suggests that the chains have not been run long
enough.

What is a large R̂ depends on the problem of interest, but a rule of thumb
is the R̂ should be below 1.1. If this is the case, then the mn draws can be
combined into a single sample for inference purposes.

(Note: I’ve also seen R̂ < 1.2 as a rule of thumb.)
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Parameter θ = 0.001 θ = 0.01 θ = 0.1 θ = 0.2 Gibbs

λ1 88.2941 4.7877 1.0439 1.0193 1.0010

λ2 80.9220 4.8551 1.2036 1.0095 1.0024

λ3 31.3008 5.6364 1.0248 1.0126 1.0017

λ4 75.6527 1.7486 1.0062 1.0037 1.0010

λ5 65.2930 3.8716 1.0852 1.0086 1.0009

λ6 31.9666 2.1821 1.0217 1.0000 1.0010

λ7 36.9225 6.4352 1.1559 1.0190 1.0020

λ8 102.3836 5.9662 1.1599 1.1416 1.0025

λ9 32.8548 2.6505 1.0022 1.0207 1.0021

λ10 116.9852 3.3047 1.0191 1.0035 1.0008

µ 1.0027 1.0164 1.0047 1.0024 1.0015

σ2 1.0030 1.0007 1.0020 1.0003 1.0018
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Note that a small R̂ doesn’t necessarily imply that the chain has
convergence. If you don’t have your starting points dispersed enough,
all the chains might miss an important part of the sample space. This can
occur when the distribution you are sampling from is multimodal and you
don’t have a chain starting from one of the modes.

Also as R̂ is based on means and variances, it works better with quantities
that are approximately normal. Thus looking at transformed variables can
be better for examining convergence. For example, log transform positive
random variables and logit transform variables on (0,1).
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Effective Sample Size

Using W and B we can compute a quantifying the effective sample size
of our sampler, i.e. the sample size for an independence sampler with the
same variance.

If our sample were truly independent, then B would be an unbiased estimate
of Var+(ψ|y). However due to the autocorrelation in an MCMC sample, B
has a positive bias in estimating Var+(ψ|y).

Thus one estimate of the effective sample size is

neff = mn
V̂ar

+
(ψ|y)

B

Actually it is better to report min(neff,mn), as superefficient estimation is
extremely rare.
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Parameter θ = 0.001 θ = 0.01 θ = 0.1 θ = 0.2 Gibbs

λ1 4.0005 4.18 47.95 103.78 4000

λ2 4.0006 4.17 12.88 201.70 3900

λ3 4.0040 4.12 81.97 155.54 1600

λ4 4.0006 5.94 298.71 476.49 4000

λ5 4.0009 4.28 26.36 220.30 810

λ6 4.0039 5.06 92.88 3666.42 4000

λ7 4.0029 4.09 15.84 105.42 1100

λ8 4.0003 4.11 15.52 17.12 2700

λ9 4.0037 4.66 719.28 97.01 3300

λ10 4.0002 4.40 104.84 497.14 3100

µ 623.1476 120.93 386.60 671.59 1500

σ2 559.2017 1653.44 772.37 2668.19 1300

(The Gibbs values are from WinBUGS and are rounded to 2 significant digits.)
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Note that if m is small, then B will have large sampling variability.

Thus neff is only a crude estimate of the effective sample size.

It is possible to determine more precise measures based on time-series
analysis of the chains.
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