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Advantages of Bayesian Analysis

• Answers the questions that researchers are usually interested in, “What
is the probability that ...”

• Formal method for combining prior beliefs with observed (quantitative)
information.

• Natural way of combining information from multiple studies.

• General approach for model indentification

• Approach for comparing non-nested models (Bayes factors)

• Can fit very realistic but complicated models
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Disadvantages of Bayesian Analysis

• Often computationally more demanding than classical (e.g. frequentist
inference).

• Software availablility: no general purpose software packages like SAS,
SPSS, S-Plus/R available. This is getting better though with programs
like BUGS.

• Requires at least one of

– Elicitation of a real subjective probability distributions of prior beliefs.
– Sensitivity analysis to show that the choice of prior doesn’t strongly

affect inference.

• Can fit overly complicated, but realistic models.
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Bayesian Analysis

• Want to make probabilistic statements about parameters, θ, functions of
parameters, g(θ), processes (which I will throw into the parameters for
now), given the probability model and the observed data, y.

• Need to determine the posterior distribution, p(θ|y).

• Information available: the prior, p(θ), and the data model, p(y|θ).

• This gives us the full probability model, describing the randomness in the
parameters and the data.

• Want to go from p(y|θ) to p(θ|y).
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Bayes Rule

p(θ|y) =
p(θ, y)
p(y)

=
p(y|θ)p(θ)

p(y)

=
p(y|θ)p(θ)∫

Θ
p(y|θ)p(θ)dθ

The above is written assuming that θ is a continuous random variable with
a density. However it could be discrete, giving

p(θ|y) =
p(y|θ)p(θ)∑
i p(y|θi)p(θi)

Generally I’ll just write the continuous version as the discrete version will
be analogous (replace integration with summation).
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Bayes’s Rule is often written as

p(θ|y) ∝ p(θ)p(y|θ)

Note that p(y|θ), sometimes referred to as the measurement model, when
treated as a function of θ for a fixed y, is just the likelihood L(θ|y). So
Bayes’ Rule can be thought of as

Posterior ∝ Prior × Likelihood

One consequence of this is that Bayesian analysis satisfies the Likelihood
Principle, which states that two data sets, with the same likelihood function,
should lead to the same inferences.

For example, suppose you had two sequences of independent Ber(p) trials
of length n. If those two sequences had the same number of successes, then
you would want to make the same statements about p from both analyses.
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Odds Ratios:

Bayes’s rule has a nice form in terms of odds ratios

p(θ1|y)
p(θ2|y)

=
p(θ1)
p(θ2)

p(y|θ1)
p(y|θ2)

=
p(θ1)
p(θ2)

L(θ1|y)
L(θ2|y)

i.e. the posterior odds are the prior odds times the likelihood ratio.
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What is Probability?

If we are going to use probability to describe our levels of belief about
a parameter or a process, we need to have an idea what we mean by
probability.

Example 1: I have two dice in my pocket, one yellow and one purple.
What is

• The probability that the yellow one rolls a 6?

• The probability that the purple one rolls a 6?

• The sum of the two rolls is 12?
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Here is a picture of the two dice for those
in the back.

So the probabilities are

• P [Yellow = 6] = 0

• P [Purple = 6] = 1
20

• P [Sum = 12] = 1
20

When determining probabilities and probability model there are two things
that need to be considered:

1. What assumptions are you making (e.g. each outcome equally likely for
each die and the dice are independent)?

2. What information are you conditioning on? All probabilities are effectively
conditional.

Probability Review - Bayes Introduction 8



Example 2: I have another two dice in my pocket (Blue (die 1) and Yellow
(die 2)). What is the probability that they both roll the same number?

Let Yi = Roll on die i. Then

P [All the same] = P [All 1] + P [All 2] + . . .

= P [Y1 = Y2 = 1] + P [Y1 = Y2 = 2] + . . .

Considerations:

1. Any dependency between the rolls on each die? Lets assume not.

2. What should we condition on - “Fool me once, shame on you. Fool me
twice, shame on me” or will he only try to fool us once?
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3. What could each die look like? There are 5 different dice based on
Platonic solids (4, 6, 8, 12, 20 sides). I’ve heard of somebody trying to
develop a gambling game based on a 7 sided die.

Let Di = Number faces on die i

4. What numbers could be on each die? 1, 2, ... , Di? All 5’s? Is each
side equally likely?
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5. Any dependency between which dice are chosen? If the Blue die is 6
sided, can the other be 6 sided as well? Or are the Di’s independent?

6. If the Di are independent, what are the probabilities?

Assumption 1 gives

P [Y1 = Y2 = 1] =
∞∑

i=1

∞∑

j=1

P [Y1 = 1, D1 = i, Y2 = 1, D2 = j]

=
∞∑

i=1

∞∑

j=1

{P [Y1 = 1|D1 = i]P [Y2 = 1|D2 = j]

× P [D1 = i,D2 = j]}
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If D1 and D2 are independent, then this reduces to

P [Y1 = Y2 = 1] =
∞∑

i=1

∞∑

j=1

{P [Y1 = 1|D1 = i]P [Y2 = 1|D2 = j]

× P [D1 = i,D2 = j]}

=

{ ∞∑

i=1

P [Y1 = 1|D1 = i]P [D1 = i]

}

×




∞∑

j=1

P [Y2 = 1|D2 = j]P [D2 = j]





= P [Y1 = 1]P [Y2 = 1]
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So we can get an answer, lets assume that

1. P [Di = 4] = P [Di = 6] = P [Di = 8] = P [Di = 12] = P [Di = 20] = 1
5

2. [Yi = k|Di] = 1
Di

; k = 1, . . . , Di

Under these assumptions

k 1 - 4 5 - 6 7 - 8 9 - 12 13 - 20

P [Yi = k] 81
600

51
600

31
600

16
600

6
600

P [All the same] = 0.0963

Probability Review - Bayes Introduction 13



Where to probabilities come from?

• Long run relative frequencies

If an experiment of independent trials is repeated over and over, the
relative frequency of an event will converge to the probability of the
event.

Let A be the event of interest and let p = P [A]. Then for a sequence of
independent trials, let

Yi = I(A occurs in trial i); Xn =
n∑

i=1

Yi

Then by the law of large numbers, the sample proportion of successes

Xn

n
−→ p as n →∞
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For example, three different experiments looked at the probability of
getting a head when flipping a coin.

– The French naturalist Count Buffon: 4040 tosses, 2048 heads (p̂ =
0.5069).

– While imprisoned during WWII, the South African statistician John
Kerrich: 10000 tosses, 5067 heads (p̂ = 0.5067)

– Statistician Karl Pearson: 24000 tosses, 12012 heads (p̂ = 0.5005)
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• Subjective beliefs

Can be used for experiments that can’t be repeated exactly, such as a
sporting event. For example, what is the probability that the Patriots
will win the Super Bowl next year. Can be done through comparison (i.e.
is getting a head on a single flip of a coin more or less likely, getting a
6 when rolling a fair 6 sided die, etc). Can also be done by comparing
different possible outcomes (1.5 times more likely than the Eagles, 10
more likely than than the Jets, 1,000,000 times more likely than the
49ers, etc).

Often expressed in terms of odds

Odds =
Prob

1− Prob
; Prob =

Odds
1 + Odds
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The idea of subjective probability fits into the idea of a fair bet. Let
p ∈ [0, 1] be the amount that you are willing to bet for a return of
$1 if the event E occurs, i.e. gain $(1-p) is E occurs, lose $p if the
complement occurs. If you want this to be a fair bet (E[gain] = 0), then
p is your subjective probability of the event E occuring.

Let p̃ be the probability of success. Then

E[gain] = (1− p)p̃− p(1− p̃)

For this to be 0, p̃ = p.
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• Models, physical understanding, etc.

The structure of the problem will often suggest a probability model. For
example, the physics of rolling a die suggest that no one side should be
favoured (equally likely outcomes), giving the uniform model used in the
earlier example. However this could be verified by looking at the long
run frequencies.

Example: Genetics - Mendel’s breeding experiments.

The expected fraction of observed phenotypes in one of Mendel’s
experiments is given by the following model

Round/Yellow 2+(1−θ)2

4

Round/Green θ(1−θ)
4

Wrinkled/Yellow θ(1−θ)
4

Wrinkled/Green (1−θ)2

4
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The value θ, known as the recombination fraction, is a measure of
distance between the two genes which regulate the two traits. θ must
satisfy 0 ≤ θ ≤ 0.5 (under some assumptions about the process of
meiosis) and when the two genes are on different chromosomes, θ = 0.5.

The probabilities used to describe Mendel’s experiments come from
current beliefs of the underlying processes of meiosis (actually
approximations to the processes), and the relationship between genes
(genotype) and expressed traits (phenotypes).

Actually the model is not right if we analyze Mendel’s data. The model
assumes that Mendel knew the genotypes of the plants he was crossing
in his experiment. However his mechanism for determining this was not
perfect.
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Note that effectively, all probabilities and probability models are subjective.
We must make assumptions about independence, exchangability, models
whenever we analyze data.

It also I feel makes moot the idea of an objective analysis. We are always
making assumptions when building models. Even if we agree on a model,
say linear regression, different people may proceed differently. Two people
could look at a residual plot and one may decide that it support the
standard linear regression model and the other may decide that it supports
some curvature and non-homogeneity of variance.
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“Since all models are wrong the
scientist cannot obtain a ‘correct’ one
by excessive elaboration. ... Just
as the ability to devise simple but
evocative models is the signature of
the great scientist so overelaboration
and overparameterization is often the
mark of mediocrity. Since all models
are wrong the scientist must be alert
to what is importantly wrong. It is
inappropriate to be concerned about
mice when there are tigers abroad.” –
George E. P. Box, 1976

”All models are wrong but some are
useful” – George E. P. Box
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Single Parameter Models

• Binomial model

• Prior choice - conjugate vs non-conjugate priors

• Summarizing the posterior

• Sensitivity analysis

• Prediction

• Normal, Poisson, and Exponential models
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Binomial Model

• Punxsutawney Phil and Wiarton Willie from first class

• Observe Willie for n years and observe y, the number of times the Willie
correctly predicts winters finish.

• Assume that each year is independent and the outcome each year is a
Bernoulli trial with success probability π.

• This implies that y|π ∼ Bin(n, π)

• The sample size n is fixed and the success probability π can be any
number in [0, 1].
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• The measurement model is

p(y|π) =
(

n

y

)
πy(1− π)n−y; π ∈ [0, 1]

Since n is fixed in this analysis, we’ll drop it as a conditioning argument
for ease of notation.

• Want to make inference on π given y and n.

• Need a prior distribution p(π) for π.

• Bayes’ choice: π ∼ U(0, 1)

p(π) =

{
1 0 ≤ π ≤ 1
0 Otherwise
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• So the Bayes’ Rule gives

p(y, π) =
(

n

y

)
πy(1− π)n−y

p(y) =
∫ 1

0

(
n

y

)
πy(1− π)n−ydπ =

1
n + 1

p(π|y) = (n + 1)
(

n

y

)
πy(1− π)n−y

In the Wiarton Willie case, n = 41 and y = 37. So the posterior density
is

p(π|y) = 42
(

41
37

)
π37(1− π)4 =

42!
37!4!

π37(1− π)4

• Where did p(y) = 1
n+1 come from?
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• It is often easier to deal with the proportional form of Bayes’ Rule

p(π|y) ∝ p(π)p(y|π)

so

p(π|y) ∝ 1× πy(1− π)n−y

This is proportional to the density of a Beta(y+1, n−y+1) distribution.

• The PDF for the for the beta distribution (Beta(α, β)) is

f(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1− x)β−1
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• In the example last class the properties of the posterior distribution used
the fact that for a Beta(α, β) RV

E[X] =
α

α + β

Var(X) =
αβ

(α + β)2(α + β + 1)

Mode(X) =
α− 1

α + β − 2
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