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Posterior Modes

As we have seen earlier, often as n →∞

p(θ|y) ≈ N(θ̂, [I(θ̂)]−1)

where θ̂ is the the posterior mode and I(θ) is the observed information

I(θ) = − d2

dθ2
log p(θ|y)
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While the asymptotics are interesting, the approximate normality is helpful
in other situations.

1. Crude estimates as starting points for approximations

2. Normal (or related) mixture approximations to the posterior

3. Separate approximations for different marginal and conditional posterior
distributions

4. Approximating distributions for Monte Carlo methods (e.g. a proposal
in Metropolis-Hastings or in Importance Sampling)

To find the posterior mode and information, numerical methods often need
to be used as closed form solutions usually aren’t available.
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Example: Linkage Analysis (Rao, 1973, pp 268-269)

Two genes on a chromosome are separated by a
recombination fraction θ ≤ 1

2

For an organism with joint haplotype AB|ab, there
are 4 possible haplotypes that can be passed to its
offspring

Haplotype Probability

AB 1−θ
2

Ab θ
2

aB θ
2

ab 1−θ
2
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An experiment was performed to estimate θ. The breeding experiment
used AB|ab × AB|ab crosses and recorded the observed phenotypes. In
this experiment, 2 dominant traits were observed (A dominant to a and B
dominant to b).

While there are 16 different possible joint haplotypes in the offspring (4 from
the father times 4 from the mother), there are only 4 possible phenotypes.

Phenotype Probability Counts

AB 3−2θ+θ2

4 125

Ab 2θ−θ2

4 18

aB 2θ−θ2

4 20

ab 1−2θ+θ2

4 34

So the likelihood function is

p(y|θ) = (3− 2θ + θ2)125(2θ − θ2)18+20(1− 2θ + θ2)34
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Now lets put a truncated Beta prior on θ

p(θ) ∝ θα−1(1− θ)β−1I(θ ≤ 0.5)

Thus the log posterior is

log p(θ|y) = 125 log(3− 2θ + θ2) + 38 log(2θ − θ2) + 34 log(1− 2θ + θ2)

+(α− 1) log θ + (β − 1) log(1− θ)

= 125 log(3− 2θ + θ2) + 38 log(2− θ) +

(α + 37) log θ + (β + 67) log(1− θ)

Following the usual approach solving d
dθ log p(θ|y) = 0 to optimize gives

d

dθ
log p(θ|y) =

125(2θ − 2)
3− 2θ + θ2

− 38
2− θ

+
α + 37

θ
− β + 67

1− θ
= 0
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This does not have an obvious closed form solution so we need to find
another approach to maximizing the posterior (or log posterior).
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There are a wide array of numerical approaches for optimizing functions. I
want to discuss two

1. Newton-Raphson (and approximations)

2. EM algorithm
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Newton-Raphson

Following the text, let

L(θ) = log p(θ|y)

Note that this can be an unnormalized density as

Lc(θ) = log cp(θ|y) = L(θ) + log c

as the same optima (c can’t be a function of θ). So we can also use

L(θ) = log p(y|θ)p(θ) = log p(y|θ) + log p(θ)

as the function to optimize.
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So we want to solve the function

L′(θ) = 0

where L′(θ) is the vector of first partial derivatives (i.e. the gradient).

For Newton-Raphson, we also need L′′(θ), the matrix of second partial
derviatives.

The the Newton-Raphson algorithm is

1. Choose a starting value, θ0

2. For t = 1, 2, 3, . . .

(a) Compute L′(θt−1) and L′′(θt−1). The Newton method step at time t
is based on the quadratic approximation to L(θ) centered at θt−1.

(b) Set the new iterate, θt, to maximize the quadratic approximation

θt = θt−1 − [L′′(θt−1)]−1L′(θt−1)
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So for the example

L′(θ) =
250(θ − 1)
3− 2θ + θ2

− 38
2− θ

+
α + 37

θ
− β + 67

1− θ

L′′(θ) =
250

(3− 2θ + θ2)
− 500(θ − 1)2

(3− 2θ + θ2)2
− 38

(2− θ)2
− α + 37

θ2
− β + 67

(1− θ)2

Note that Newton-Raphson is not guaranteed to converge. The starting
point θ0 can be very important, particularly when −L′′ is not positive
definite.

One advantage to Newton-Raphson is that once you get close to the
solution, the convergence is very fast (quadratic convergence). Also if the
sequence won’t converge, it is usually obvious quickly.
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There is another advantage to Newton-Raphson in the Bayesian (or
likelihood) framework. The update formula can be written as

θt = θt−1 − [L′′(θt−1)]−1L′(θt−1) = θt−1 + [I(θt−1)]−1L′(θt−1)

Thus as we are determining the mode, we are also calculating the information
matrix, and depending on how the update is done, we are also getting the
asymptotic posterior variance matrix [I(θ)]−1.

Note that when implementing this, you usually do not want to invert
I(θt−1), but instead solve the system

L′′(θt−1)∆θ = L′(θt−1) or I(θt−1)∆θ∗ = L′(θt−1)

and update with

θt = θt−1 −∆θ or θt = θt−1 + ∆θ∗

as it is faster and more numerically stable.
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Approximations to Newton-Raphson

Note as described, Newton-Raphson requires the calculations of derivatives.
However it is easy to approximate derivatives numerically. One approach is
approximate the derivatives with

L′i(θ) =
dL

dθi
≈ L(θ + δiei)− L(θ − δiei)

2δi

and

L′′ij(θ) =
d2L

dθidθj
=

d

dθj

dL

dθi

≈ L′i(θ + δjej)− L′i(θ − δjej)
2δj

≈ [L(θ + δiei + δjej)− L(θ − δiei + δjej)

−L(θ − δiei + δjej) + L(θ − δiei − δjej)]/(4δiδj)
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where ei is the unit vector corresponding to the ith component of θ.

δi, the size of the deviation to take along direction ei depends on the scale
of the problem, but should be small.

You don’t want it too big as curvature of L will make this a poor
approximation.

But you don’t want it too small as to avoid round off error.

Often a value such as 0.0001 is reasonable.
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EM Algorithm

Dempster, Laird, and Rubin (1977)

EM = Expectation – Maximization

An approach for finding MLEs and posterior modes.

In the likelihood situation, it is often based on decomposing data X = (Y, Z)
into observed (Y ) and missing parts (Z). Want to maximize

p(y|θ) =
∫

p(y, z|θ)dz

In the Bayesian situation, its based on splitting θ = (φ, γ), where you want
to maximize over φ after average over γ.

p(φ|y) =
∫

p(φ, γ|y)dγ
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Want posterior mode of p(φ|y) instead of p(φ, γ|y).

I will present thing in terms of the Bayesian solution. For the implementation
in the likelihood situation, see the 221 notes on the course web site.

EM in this setting is based on the relationship

p(φ|y) =
p(φ, γ|y)
p(γ|φ, y)

Now lets take logs, giving

log p(φ|y) = log p(φ, γ|y)− log p(γ|φ, y)

Lets take expectation of both sides, with respect to the density p(γ|φold, y),
where φold is a current (old) guess of φ

log p(φ|y) = Eold[log p(φ, γ|y)]− Eold[log p(γ|φ, y)]
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Let

Q(φ|φold) = Eold[log p(φ, γ|y)]

and

H(φ|φold) = Eold[log p(γ|φ, y)]

So

log p(φ|y) = Q(φ|φold)−H(φ|φold)

It is possible to show that H(φ|φold), treated as a function of φ, is maxmized
at φold, i.e.

H(φ|φold) ≤ H(φold|φold) for all φ
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Now let φnew be any value of φ such that

Q(φnew|φold) ≥ Q(φold|φold)

Thus

log p(φnew|y) = Q(φnew|φold)−H(φnew|φold)

≥ Q(φold|φold)−H(φold|φold) = log p(φold|y)

This relationship is the main idea behind the Generalized EM (GEM)
algorithm.

At each step, finding a φ which leads to an increase of Q(φ|φold) must lead
to an increase in the marginal log posterior log p(φ|y).
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Implementing the EM Algorithm

1. Start with a estimate of the parameter φ0.

2. For t = 1, 2, 3, . . .

(a) E-step: Determine the expected log posterior density function

Q(φ|φt−1) = Et[log p(φ, γ|y)] =
∫

log p(φ, γ|y)p(γ|φt−1, y)dγ

(b) M-step: Maximize the expected log posterior density

φt = arg sup Q(φ|φt−1)

For a GEM algorithm, φt−1 doesn’t have to maximize Q(φ|φt−1) but
only satisfy Q(φt|φt−1) ≥ Q(φt−1|φt−1).
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Example: Fatal Airline Accidents

yi
iid∼ Poisson(λ)

λ ∼ Exp(µ)

µ ∼ Gamma(α, β)

Want to maximize p(λ|y). Note that

p(λ|y) ∝ λnȳe−nλ

(λ + β)α+1

The mode is a solution to the quadratic equation

nλ2 + (α + 1 + nβ − nȳ)λ− nβ = 0
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For the data in Table 2.2, n = 10 and ȳ = 23.8. If α = 15 and β = 1

10 15 20 25 30 35 40

41
0

42
0

43
0

44
0

45
0

46
0

Log Posterior with Gamma(15,1) Prior

λ

lo
g 

p(
λ|

y)

ŷ y
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Need for EM algorithm:

1. p(λ, µ|y)

p(λ, µ|y) ∝ λ
P

yie−nλµe−µλµα−1βαe−µβ

Γ(α)

Note that the sufficient statistic here is ȳ = 23.8 and n = 10

2. p(µ|λ, y)

µ|λ, y ∼ Gamma(α + 1, λ + β)
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3. E-step: find Q(λ|λt−1)

log p(λ, µ|y) = α log µ− µ(λ + β)− nλ + nȳ log λ + c

Q(λ|λt−1) = Eλt−1[µλ− nλ + nȳ log λ + c]

= λEλt−1[µ] + nλ + nȳ log λ + c

= λ(Eλt−1[µ] + n) + nȳ log λ + c

since µ|λ, y is Gamma(α + 1, λ + β)

Eλt−1[µ] =
α + 1

λt−1 + β

then

Q(λ|λt−1) = λ

(
α + 1

λt−1 + β
+ n

)
+ nȳ log λ + c
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4. M-step:

λt = arg sup Q(λ|λt−1)

=
nȳ

α+1
λt−1+β

+ n

=
nȳ(λt−1 + β)

α + 1 + n(λt−1 + β)

Note that it can be shown that this sequence will converge to a root of

nλ2 + (α + 1 + nβ − nȳ)λ− nβ = 0

which is the same equation derived for log p(λ|y) directly.
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If α = 15 and β = 1 and λ0 = 15, the sequence of updates is

t λt

0 15.00000

1 21.63636

2 22.22881

3 22.26630

4 22.26861

5 22.26875

6 22.26876

7 22.26876
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Under some regularity conditions, for any GEM, the sequence φ1, φ2, φ3, . . .
converges to a local mode of the posterior density.

Note that the proof of this result in Dempster, Laird, and Rubin (1979)
wasn’t quite right. Wu (1983) found valid conditions to indicate when this
sequence would converge to a local mode.

Theorem. Under some regularity conditions, for any GEM sequence {φt},

log p(φt|y) > log p(φt−1|y)

if

φt−1 6∈ Φ =
{

φ :
d

dφ
log p(φ|y) = 0

}

Thus you will continue to increase the posterior density until you hit a local
mode.
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The proof of the theorem depends on the fact that

d

dφ
log p(φ|y) =

d

dφ
Q(φ|φ)

when the derivative of Q is taken with respect to the first φ. Thus if you
are at a mode, Q must have a 0 derivative, implying you can’t increase Q.

The EM algorithm has linear convergence, thus it tends to converge slower
than algorithms like Newton-Raphson. However it does have the advantage
that it is guaranteed to converge, unlike Newton-Raphson.

For this algorithm to be feasible, it must be possible to maximize Q easily,
or at least find a value which increases it. Thus the EM algorithm isn’t
feasible for all problems. However there are a number of extensions that
can make some of the more difficult problems feasible.
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