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Linear Regression Models

Notation:

• y: response or outcome variable

• x = (x1, . . . , xk): explanatory or predictor variables. These may be
continuous or discrete.

Data model: For observation i, i = 1, . . . , n

yi = β1xi1 + β2xi2 + . . . + βkxik + ei

Note this model doesn’t explicitly include an intercept. An intercept can be
included by setting xi1 = 1 for all i.

The common assumption for the error terms is

ei
iid∼ N(0, σ2)
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This can be relaxed allowing for nonconstant variance and correlation of the
errors.

Note that this model is conditioning on the x’s and doesn’t consider how
the x’s are generated. They could be random, or deterministic, as in an
experiment.
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Conditional Modelling

In what follows, our models will be conditional on X. When can we do this.

Assume that X ∼ p(X|ψ) and y|X ∼ p(y|X, θ) and assume that ψ and θ
have no common components.

In addition, assume that p(ψ, θ) = p(ψ)p(θ) (i.e. ψ and θ are independent
apriori).

Thus

p(ψ, θ|X, y) =
p(X|ψ)p(ψ)p(y|X, θ)p(θ)

p(X)p(y|X)

= p(ψ|X)p(θ|X, y)

which implies to learn about θ, we only need to look at p(θ|X, y).
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As earlier

p(θ|X, y) ∝ p(y|X, θ)p(θ)

In much of what that follows, as in the text the dependency on X will be
suppressed for notational clarity

Note that this situation does not include the case where X is measured
with error. For example

y|X ∼ N(Xβ, σ2I)

Xobs
i |Xi

ind∼ N(Xi, Σ)

X ∼ P (X|ψ)

In this case, the posterior distribution of (β, σ2) will depend on Σ.
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Bayesian Analysis of Classical Regression Model

Data model:

y|β, σ2, X ∼ N(Xβ, σ2I)

where I is the n× n identity matrix

Prior:

Lets start with a convenient non-informative prior

p(β, σ2|X) ∝ σ−2 =
1
σ2

This is equivalent to saying (β, log σ) are uniform.

This prior is reasonable with n is large and k (the number of βs) is small.
It may not do well with smaller sample size.

Bayesian Analysis of Classical Regression Model 5



Posterior Distribution:

As with earlier normal based models, we want to take a hierarchical approach
to the posterior. That is

p(β, σ2|y) = p(σ2|y)p(β|σ2, y)

First, lets deal with β|σ2, y

β|σ2, y ∼ N(β̂, Vβσ2)

where

β̂ = (XTX)−1XTy

Vβ = (XTX)−1
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Next, σ2|y is

σ2|y ∼ Inv−χ2(n− k, s2)

It can be shown that β|y is Multivariate tn−k(β̂, Vβs2) (with dimension k)

Note that these results agree with the standard frequentist regression
estimates.

Note that is this case the posterior distribution of (β, σ2) is proper if

1. n > k (More observations than predictor variables)

2. rank(X) = k (None of the xs are a linear combination of the others.)

These are the standard conditions for existence of MLEs in standard
regression models.
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Sampling From the Posterior

While it is possible to sample directly from the distribution p(β|y), which
is usually the posterior distribution of interest, it is more usual to use the
following algorithm

1. Sample σ2(j) ∼ Inv−χ2(n− k, s2)

2. Sample β(j) ∼ N(β̂, Vβσ2(j))

Then (β(j), σ2(j)) is a draw from p(β, σ2|y)

Note that this is an exact analog to the sampling scheme used for the model

yi|µ, σ2 iid∼ N(µ, σ2)

p(µ, σ) ∝ 1
σ2
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To implement this, you can use the scheme discussed in the book based the
QR factorization.

If you are using R, you can use the following code to implement sampling
(β, σ2). This assume that you have analyzed the model with the lm()
command and stored the results in lmout and the library MASS has been
loaded.

betahat <- coef(lmout)
df <- summary(lmout)$df
s2 <- (summary(lmout)$sigma)^2
Vbeta <- vcov(lmout)/s2

sigma2 <- 1/rgamma(n,df[2]/2, s2*df[2]/2)

# Should be a way of vectorizing this code for generating beta

beta <- matrix(0, ncol=df[1], nrow=n)
for(i in 1:n) beta[i,] <- mvrnorm(df[1], betahat, sigma2[i]*Vbeta)
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Note that R implements lm via the QR factorization, so most of the
advantages discussed in the text will occur.
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Posterior Predictive Distribution

One of the advantages of using the above scheme for simulating posterior
βs is that it is easy to sample from the posterior predictive distribution as

p(ỹ|β, σ2, y) = p(ỹ|β, σ2)

For example, to simulate yrep for model checking, add the step

3. Sample yrep(j) ∼ N(Xβ(j), Vβσ2(j))

The exact distribution of ỹ can be determined in this case (assume want
evaluated with X̃).
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First

E[ỹ|σ2, y] = E[E[ỹ|, β, σ2, y]|σ2, y]

= E[X̃β|σ2, y]

= X̃β̂

Next

Var(ỹ|σ2, y) = E[Var(ỹ|, β, σ2, y)|σ2, y] + Var(E[ỹ|, β, σ2, y]|σ2, y)

= E[σ2I|σ2, y] + Var(X̃β|σ2, y)

= (I + X̃VβX̃T )σ2
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Also note that ỹ|σ2, y is normal with this mean and variance.

Now averaging over the posterior distribution of σ2|y, gives that ỹ|y is
Multivariate tn−k(X̃β̂, (I + X̃VβX̃T )s2) (with dimension = rows(X̃)).

Note that this is equivalent to what we get for prediction intervals in
standard normal linear regression.

xTβ ± t∗n−ks
√

1 + xT (XTX)−1x
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Example

EPA Gas Ratings for 1993 Model Year

93 different car models were examined. We will focus on the EPA City
MPG ratings

• y = City MPG

• Weight (in lbs)

• Engine Size (in litres)

• Type: Compact, Large, Midsize, Small, Sporty

• Domestic: 0 = Foreign, 1 = Domestic
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The usual considerations for linear regression occur with a Bayesian
approach. These include

• Linearity

• Interactions

• Indicator variables for categorical predictors

• Which variables to include in model

• Distributional assumptions (e.g. normality, conditional independence,
constant variance, etc)

• Influence and leverage

• Collinearity and identifiability
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Based on the earlier plots and some theoretical considerations involving the
physics of the situation, we will work with

CityFuel =
100

CityMPG

which is the number of gallons needed to go 100 miles as the response
variable. This is also equivalent to how fuel use is reported in most countries.

This transformation helps with the linearity of the responses and the
constant variance assumption of the deviations from the regression surface.
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The standard regression diagnostics look much better with the transformed
response.

The flagged points for the two different regressions are

ID Model Weight Engine Size Type Domestic City MPG

5 BMW 535i 3640 3.5 Midsize 0 22

28 Dodge Stealth 3805 3.0 Sporty 1 18

36 Ford Aerostar 3735 3.0 Van 1 15

39 Geo Metro 1695 1.0 Small 0 46

42 Honda Civic 2350 1.5 Small 0 42

57 Mazda RX-7 2895 1.3 Sporty 0 17

83 Suzuki Swift 1965 1.3 Small 0 39

91 Volkswagen Corrado 2810 2.8 Sporty 0 18
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Call: lm(formula = CityFuel ~ Weight + EngSize + Type + Domestic - 1)

Residuals:
Min 1Q Median 3Q Max

-1.08952 -0.23639 -0.01651 0.22142 1.39432

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Weight 1.0568 0.2245 4.707 9.8e-06 ***
EngSize 0.1668307 0.0981565 1.700 0.0929 .
TypeCompact 0.9392962 0.5309963 1.769 0.0805 .
TypeLarge 0.8140547 0.6291158 1.294 0.1992
TypeMidsize 1.0327802 0.5953603 1.735 0.0865 .
TypeSmall 0.7367161 0.4352036 1.693 0.0942 .
TypeSporty 1.2116800 0.5243741 2.311 0.0233 *
TypeVan 1.2968046 0.6900831 1.879 0.0637 .
Domestic 0.0586004 0.0992826 0.590 0.5566

Residual standard error: 0.4102 on 84 degrees of freedom
Multiple R-Squared: 0.9934, Adjusted R-squared: 0.9927
F-statistic: 1403 on 9 and 84 DF, p-value: < 2.2e-16
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Analysis of Variance Table

Response: CityFuel
Df Sum Sq Mean Sq F value Pr(>F)

Weight 1 2122.41 2122.41 12615.1113 < 2e-16 ***
EngSize 1 0.04 0.04 0.2306 0.63234
Type 6 2.63 0.44 2.6004 0.02321 *
Domestic 1 0.06 0.06 0.3484 0.55662
Residuals 84 14.13 0.17

Notes:

• These are sequential SS thus you need to be careful in interpreting the
F-tests.

• Weight has been adjusted to units of 1000 of pounds
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β E[β|y] SD(β|y) P [β > 0|y]
βWeight 1.056 0.233 1.000

βEngSize 0.167 0.102 0.948

βDomestic 0.061 0.102 0.734

βCompact 0.939 0.547 –

βLarge 0.812 0.640 –

βMidsize 1.030 0.608 –

βMidsize 0.735 0.447 –

βSporty 1.212 0.530 –

βVan 1.293 0.699 –

E[σ2|y] = 0.173 SD(σ2|y) = 0.027

E[σ|y] = 0.414 SD(σ|y) = 0.032
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P [βRow > βColumn|y]

βCompact βLarge βMidsize βSmall βSporty βVan

βCompact – 0.733 0.283 0.890 0.032 0.060

βLarge 0.267 – 0.102 0.623 0.029 0.015

βMidsize 0.717 0.898 – 0.930 0.134 0.079

βSmall 0.110 0.377 0.070 – 0.003 0.031

βSporty 0.968 0.971 0.866 0.997 – 0.366

βVan 0.940 0.985 0.921 0.969 0.634 –
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