# Linear Regression Models II 

Statistics 220

Spring 2005


## Comparing Regression Models

Model 1:
$E[$ CityFuel $]=\beta_{1}$ Weight $+\beta_{2}$ EngSize $+\beta_{3}$ Domestic

$$
\begin{aligned}
& +\beta_{4} I(\text { Type }=\text { Compact })+\beta_{5} I(\text { Type }=\text { Large })+\beta_{6} I(\text { Type }=\text { Midsize }) \\
& +\beta_{7} I(\text { Type }=\text { Small })+\beta_{8} I(\text { Type }=\text { Sporty })+\beta_{9} I(\text { Type }=\text { Van })
\end{aligned}
$$

Model 2:
$E[$ CityFuel $]=\beta_{1}$ Weight $+\beta_{2}$ EngSize $+\beta_{3}$ Domestic $+\beta_{4}$

Do we get significantly better fit when we include the car type in the model.
There are a couple of ways of examining this:

- Examine the distributions of $\beta_{i}-\beta_{j} \mid y ; i, j=4, \ldots, 9$ in Model 1
- Compare DICs for the two models.

Implementation:
Both models where examined with WinBUGS with the non-informative prior

$$
p\left(\beta, \sigma^{2}\right) \propto \frac{1}{\sigma^{2}}
$$

approximated by

$$
\begin{aligned}
\beta_{i} & \sim N\left(0,10^{6}\right) \\
\sigma^{2} & \sim \operatorname{Inv}-\operatorname{Gamma}(0.001,0.001)
\end{aligned}
$$

## Posterior distributions of $\boldsymbol{\beta}_{\boldsymbol{i}}-\boldsymbol{\beta}_{j} \mid \mathbf{y}$

















5 chains, each with 2000 iterations (first 1000 discarded), n.thin $=5$, n.sims $=1000$ iterations saved

Time difference of 9 secs
mean sd $2.5 \% \quad 25 \% \quad 50 \% \quad 75 \% ~ 97.5 \%$ Rhat n.eff

| beta[1] | 1.1 | 0.2 | 0.6 | 0.9 | 1.1 | 1.2 | 1.5 | 1 | 1000 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| beta[2] | 0.2 | 0.1 | 0.0 | 0.1 | 0.2 | 0.2 | 0.4 | 1 | 1000 |
| beta[3] | 0.1 | 0.1 | -0.1 | 0.0 | 0.1 | 0.1 | 0.3 | 1 | 710 |
| beta[4] | 0.9 | 0.6 | -0.1 | 0.6 | 0.9 | 1.3 | 2.1 | 1 | 1000 |
| beta[5] | 0.8 | 0.7 | -0.5 | 0.4 | 0.8 | 1.3 | 2.1 | 1 | 1000 |
| beta[6] | 1.0 | 0.6 | -0.2 | 0.6 | 1.0 | 1.5 | 2.2 | 1 | 1000 |
| beta[7] | 0.7 | 0.5 | -0.1 | 0.4 | 0.7 | 1.0 | 1.7 | 1 | 1000 |
| beta[8] | 1.2 | 0.6 | 0.2 | 0.8 | 1.2 | 1.6 | 2.3 | 1 | 1000 |
| beta[9] | 1.3 | 0.7 | -0.1 | 0.8 | 1.3 | 1.8 | 2.7 | 1 | 1000 |
| sigma | 0.4 | 0.0 | 0.4 | 0.4 | 0.4 | 0.4 | 0.5 | 1 | 370 |
| deviance | 99.5 | 4.9 | 92.1 | 95.9 | 98.9 | 102.3 | 110.8 | 1 | 650 |

$\mathrm{pD}=11.8$ and $\mathrm{DIC}=111.3$ (using the rule, $\mathrm{pD}=\operatorname{var(deviance)/2)}$

5 chains, each with 2000 iterations (first 1000 discarded),
n.thin $=5$, n.sims $=1000$ iterations saved

Time difference of 5 secs
mean sd 2.5\% 25\% 50\% 75\% 97.5\% Rhat n.eff

beta[1] 1.4 | 10.1 | 1.1 | 1.3 | 1.4 | 1.5 | 1.7 | 1 | 1000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

beta[2] $0.10 .1-0.1 \quad 0.0 \quad 0.1 \quad 0.1 \quad 0.2 \quad 100$

beta[3] 0.1 |  | 0.1 | -0.1 | 0.0 | 0.1 | 0.2 | 0.3 | 1 | 1000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| beta[4] | 0.3 | 0.3 | -0.2 | 0.1 | 0.3 | 0.5 | 0.8 | 1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| sigma | 0.4 | 0.0 | 0.4 | 0.4 | 0.4 | 0.5 | 0.5 | 1 |

deviance $107.63 .1103 .2105 .3107 .2109 .4114 .7 \quad 11000$
$\mathrm{pD}=4.7$ and $\mathrm{DIC}=112.4$ (using the rule, $\mathrm{pD}=\operatorname{var}($ deviance)/2)

Based on the distributions of $\beta_{i}-\beta_{j} \mid y$, it appears that some types of cars do get different gas mileage, such as Compacts and Vans or Small and Sporty.

However, from a prediction point of view, it doesn't seem to be a big difference as the increase in DIC for Model 2 is very small, suggesting that the we are not getting a great improvement in fit with the extra 5 parameters.

## Including Prior Information

It is possible (of course) to include informative priors in regression models. While any proper prior could be used, a common approach is to us an analogue to the semi-conjugate normal model discussed in Chapter 3.

This prior is of the form

$$
\begin{aligned}
\beta & \sim N\left(\beta_{0}, \Sigma_{\beta}\right) \\
\sigma^{2} & \sim \operatorname{Inv}-\chi^{2}\left(n_{0}, \sigma_{0}^{2}\right)
\end{aligned}
$$

While $\Sigma_{\beta}$ can be any valid variance-covariance matrix, often it will be diagonal (e.g. $\quad \Sigma_{\beta}=\operatorname{diag}\left(\sigma_{\beta_{1}}^{2}, \ldots, \sigma_{\beta_{k}}^{2}\right)$ ), implying all parameters are independent apriori.

When putting a proper prior on $\beta$ you often will want to use different variances for the different parameters for a number of reasons

- The values of the individual $\beta_{i} \mathrm{~s}$ will depend on the scale of the predictor variables, $x_{i}$. For example if you change the scale of an $x_{i}$ from pounds to kilograms, you need to adjust the variance by a factor of 4.852 .
- Different prior beliefs on the different $\beta \mathbf{s}$

The analysis of this model needs be done by Monte Carlo techniques such as the Gibbs Sampler, as the marginal posteriors aren't nice.

However the conditional posteriors are as

- $\beta \mid \sigma^{2}, y \sim N(\mu, \Lambda)$ with

$$
\begin{aligned}
& \Lambda=\left(\Sigma_{\beta}^{-1}+\frac{1}{\sigma^{2}} X^{T} X\right)^{-1} \\
& \mu=\Lambda\left(\Sigma_{\beta}^{-1} \beta_{0}+\frac{1}{\sigma^{2}} X^{T} y\right)
\end{aligned}
$$

- $\sigma^{2} \mid \beta, y$

$$
\sigma^{2} \mid \beta, y \sim \operatorname{Inv}-\chi^{2}\left(n_{0}+n, \frac{n_{0} \sigma_{0}^{2}+n s^{2}}{n_{0}+n}\right)
$$

where

$$
s^{2}=\frac{1}{n}(y-X \beta)^{T}(y-X \beta)
$$

## Different Measurement Variance Structures

As mentioned earlier, the error structure of the observations does not have to to be independent with equal variance. In general

$$
y \mid \beta, \Sigma_{y} \sim N\left(X \beta, \Sigma_{y}\right)
$$

where $\Sigma_{y}$ is a symmetric, positive definite matrix.
This matrix can come from many different approaches

- Variance matrix known up to a scalar factor

$$
\Sigma_{y}=Q_{y} \sigma^{2}
$$

where $Q_{y}$ is a known fixed matrix and $\sigma^{2}$ is unknown.
Inference in this case reduces to what we have seen before. Let $Q_{y}^{1 / 2}$ be a matrix square root of $Q_{y}$ (e.g. $\left(Q_{y}^{1 / 2}\right)^{T} Q_{y}^{1 / 2}=Q_{y}$ ). Then

$$
Q_{y}^{-1 / 2} y \mid \beta, \sigma^{2} \sim N\left(Q_{y}^{-1 / 2} X \beta, \sigma^{2} I\right)
$$

For example, if the $p\left(\beta, \sigma^{2}\right) \propto \sigma^{-2}$ noninformative prior is used, the earlier approach with

$$
\begin{aligned}
\hat{\beta} & =\left(X^{T} Q_{y}^{-1} X\right)^{-1} X^{T} Q_{y}^{-1} y \\
V_{\beta} & =\left(X^{T} Q_{y}^{-1} X\right)^{-1} \\
s^{2} & =\frac{1}{n-k}(y-X \hat{\beta})^{T} Q_{y}^{-1}(y-X \hat{\beta})
\end{aligned}
$$

Note that the matrix inversions do not usually need to be calculated directly as $Q_{y}^{1 / 2}$ is usually determined by the Cholesky decomposition or the Singular Value decomposition and the inverse can be based on these.

One example where this approach is reasonable is Weighted regression where

$$
Q_{y}=\operatorname{diag}\left(\frac{1}{w_{1}}, \ldots, \frac{1}{w_{n}}\right)
$$

where $w_{i}$ are known as weights. This can occur if $y_{i}$ is the average of $w_{i}$ observations.

- Parametric models

Instead of $Q_{y}$ being a fixed matrix, it can be a function of a parameter $\phi$. Examples of this include

- Equal correlation

$$
Q_{y}=\left[\begin{array}{llll}
1 & \rho & \rho & \rho \\
\rho & 1 & \rho & \rho \\
\rho & \rho & 1 & \rho \\
\rho & \rho & \rho & 1
\end{array}\right]
$$

- AR(1)

$$
Q_{y}=\left[\begin{array}{cccc}
1 & \rho & \rho^{2} & \rho^{3} \\
\rho & 1 & \rho & \rho^{2} \\
\rho^{2} & \rho & 1 & \rho \\
\rho^{3} & \rho^{2} & \rho & 1
\end{array}\right]
$$

If the $p\left(\beta, \sigma^{2}\right) \propto \sigma^{-2}$ noninformative prior is used for $\beta$ and $\sigma^{2}$, the previous results can be used to get $p\left(\beta, \sigma^{2} \mid \phi, y\right)$. Then it can be shown that in this case

$$
\begin{aligned}
p(\phi \mid y) & =\frac{p\left(\beta, \sigma^{2}, \phi \mid y\right)}{p\left(\beta, \sigma^{2} \mid \phi, y\right)} \\
& \propto \frac{p(\phi) N\left(y \mid X \beta, \sigma^{2} Q_{y}\right)}{\operatorname{Inv}-\chi^{2}\left(\sigma^{2} \mid n-k, s^{2}\right) N\left(\beta \mid \hat{\beta}, V_{\beta} \sigma^{2}\right)} \\
& \propto p(\phi)\left|V_{\beta}\right|^{1 / 2}\left(s^{2}\right)^{-(n-k) / 2}
\end{aligned}
$$

Note that $\hat{\beta}, V_{\beta}$, and $s^{2}$ are functions of $\phi$ so the posterior density is non-standard.

If an informative prior is put on $\beta$ and/or $\sigma^{2}$, sampling will need to be done by an MCMC routine. Gibbs is often useful here, particularly if the $\mathrm{N}-\operatorname{Inv}-\chi^{2}$ prior is placed on $\beta, \sigma^{2}$. In this case the conditional posteriors are

- $\beta \mid \sigma^{2}, \phi, y \sim N(\mu, \Lambda)$ with

$$
\begin{aligned}
& \Lambda=\left(\Sigma_{\beta}^{-1}+\frac{1}{\sigma^{2}} X^{T} Q_{y}^{-1} X\right)^{-1} \\
& \mu=\Lambda\left(\Sigma_{\beta}^{-1} \beta_{0}+\frac{1}{\sigma^{2}} X^{T} Q_{y}^{-1} y\right)
\end{aligned}
$$

$-\sigma^{2} \mid \beta, \phi, y$

$$
\sigma^{2} \mid \beta, \phi, y \sim \operatorname{Inv}-\chi^{2}\left(n_{0}+n, \frac{n_{0} \sigma_{0}^{2}+n s^{2}}{n_{0}+n}\right)
$$

where

$$
s^{2}=\frac{1}{n}(y-X \beta)^{T} Q_{y}^{-1}(y-X \beta)
$$

Again $\hat{\beta}, V_{\beta}$, and $s^{2}$ are functions of $\phi$ in these two conditional posteriors.
$-\phi \mid \beta, \sigma^{2}, y$
This depends on the situation be will probably will have to be handled by something like acceptance - rejection sampling as a conjugate structure will be difficult in many situations

- Arbitrary matrices

It is possible for $\Sigma_{y}$ to be an arbitrary, symmetric, positive definite matrix. Depending on the form of the prior on $\beta$ and $\Sigma_{y}$, the posterior $p\left(\beta, \Sigma_{y} \mid y\right)$ can be difficult to handle, leading to MCMC approaches. However there are some cases where the posterior can be handled somewhat more easily.
$-p\left(\beta \mid \Sigma_{y}\right) \propto 1$

$$
\beta \mid \Sigma_{y}, y \sim N\left(\left(X^{T} \Sigma_{y}^{-1} X\right)^{-1} X^{T} y,\left(X^{T} \Sigma_{y}^{-1} X\right)^{-1}\right)
$$

$$
p\left(\Sigma_{y} \mid y\right) \propto p\left(\Sigma_{y}\right)\left|\left(X^{T} \Sigma_{y}^{-1} X\right)\right|^{-1 / 2} \exp \left(-\frac{1}{2}(y-X \hat{\beta})^{T} \Sigma_{y}^{-1}(y-X \hat{\beta})\right)
$$

Usually this is difficult to handle, but is feasible if

$$
\Sigma_{y} \sim \operatorname{Inv}-\mathrm{Wishart}_{\nu}\left(S^{-1}\right)
$$

as this is a conjugate distribution in this case.
$-\beta \mid \Sigma_{y} \sim N\left(\beta_{0}, \Sigma_{\beta}\right)$
This has a similar structure to before as $\beta \mid \Sigma_{y}, y \sim N(\mu, \Lambda)$ with

$$
\begin{aligned}
& \Lambda=\left(\Sigma_{\beta}^{-1}+X^{T} \Sigma_{y}^{-1} X\right)^{-1} \\
& \mu=\Lambda\left(\Sigma_{\beta}^{-1} \beta_{0}+X^{T} \Sigma_{y}^{-1} y\right)
\end{aligned}
$$

(Let $\Sigma_{y} \rightarrow \infty \times I$ in above and the formula reduce to the uniform prior case.)

And again $p\left(\Sigma_{y} \mid y\right)$ will probably be tough to handle, except when $\Sigma_{y} \sim \operatorname{Inv}-\operatorname{Wishart}_{\nu}\left(S^{-1}\right)$

## Posterior Predictive Distribution

As noted in the text, the posterior predictive distribution is more difficult as you need to consider the correlation between $y$ and $\tilde{y}$.

However, the approach is the same regardless of the structure of $\Sigma_{y}$.
Assume that

$$
\left(\begin{array}{c|c}
y & X, \tilde{X}, \theta \\
\tilde{y} & \sim N\left(\binom{X \beta}{\tilde{X} \beta},\left(\begin{array}{cc}
\Sigma_{y} & \Sigma_{y, \tilde{y}} \\
\Sigma_{\tilde{y}, y} & \Sigma_{\tilde{y}}
\end{array}\right)\right), ~
\end{array}\right.
$$

Then $\tilde{y} \mid \beta, \Sigma_{y}, y \sim N(\mu, \Lambda)$ with

$$
\begin{aligned}
\mu & =\tilde{X} \beta+\Sigma_{\tilde{y}, y} \Sigma_{y}^{-1}(y-X \beta) \\
\Lambda & =\Sigma_{\tilde{y}}-\Sigma_{\tilde{y}, y} \Sigma_{y}^{-1} \Sigma_{y, \tilde{y}}
\end{aligned}
$$

Thus simulation is not difficult, assuming that sampling from $p\left(\beta, \Sigma_{y}\right)$ is possible.

Also note that if $y_{i}$ are independent, then the formulas reduce to the simpler cases we've seen before, except possibly for an adjustment if the $y_{i}$ don't have equal variance.

