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Comparing Regression Models

Model 1:

E[CityFuel] = β1Weight + β2EngSize + β3Domestic

+β4I(Type = Compact) + β5I(Type = Large) + β6I(Type = Midsize)

+β7I(Type = Small) + β8I(Type = Sporty) + β9I(Type = Van)

Model 2:

E[CityFuel] = β1Weight + β2EngSize + β3Domestic + β4
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Do we get significantly better fit when we include the car type in the model.

There are a couple of ways of examining this:

• Examine the distributions of βi − βj|y; i, j = 4, . . . , 9 in Model 1

• Compare DICs for the two models.

Implementation:

Both models where examined with WinBUGS with the non-informative prior

p(β, σ2) ∝ 1
σ2

approximated by

βi ∼ N(0, 106)

σ2 ∼ Inv−Gamma(0.001, 0.001)
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Posterior distributions of βi − βj|y
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5 chains, each with 2000 iterations (first 1000 discarded),
n.thin = 5, n.sims = 1000 iterations saved
Time difference of 9 secs

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
beta[1] 1.1 0.2 0.6 0.9 1.1 1.2 1.5 1 1000
beta[2] 0.2 0.1 0.0 0.1 0.2 0.2 0.4 1 1000
beta[3] 0.1 0.1 -0.1 0.0 0.1 0.1 0.3 1 710
beta[4] 0.9 0.6 -0.1 0.6 0.9 1.3 2.1 1 1000
beta[5] 0.8 0.7 -0.5 0.4 0.8 1.3 2.1 1 1000
beta[6] 1.0 0.6 -0.2 0.6 1.0 1.5 2.2 1 1000
beta[7] 0.7 0.5 -0.1 0.4 0.7 1.0 1.7 1 1000
beta[8] 1.2 0.6 0.2 0.8 1.2 1.6 2.3 1 1000
beta[9] 1.3 0.7 -0.1 0.8 1.3 1.8 2.7 1 1000
sigma 0.4 0.0 0.4 0.4 0.4 0.4 0.5 1 370
deviance 99.5 4.9 92.1 95.9 98.9 102.3 110.8 1 650
pD = 11.8 and DIC = 111.3 (using the rule, pD = var(deviance)/2)

5 chains, each with 2000 iterations (first 1000 discarded),
n.thin = 5, n.sims = 1000 iterations saved
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Time difference of 5 secs
mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

beta[1] 1.4 0.1 1.1 1.3 1.4 1.5 1.7 1 1000
beta[2] 0.1 0.1 -0.1 0.0 0.1 0.1 0.2 1 1000
beta[3] 0.1 0.1 -0.1 0.0 0.1 0.2 0.3 1 1000
beta[4] 0.3 0.3 -0.2 0.1 0.3 0.5 0.8 1 1000
sigma 0.4 0.0 0.4 0.4 0.4 0.5 0.5 1 750
deviance 107.6 3.1 103.2 105.3 107.2 109.4 114.7 1 1000
pD = 4.7 and DIC = 112.4 (using the rule, pD = var(deviance)/2)
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Based on the distributions of βi − βj|y, it appears that some types of cars
do get different gas mileage, such as Compacts and Vans or Small and
Sporty.

However, from a prediction point of view, it doesn’t seem to be a big
difference as the increase in DIC for Model 2 is very small, suggesting
that the we are not getting a great improvement in fit with the extra 5
parameters.
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Including Prior Information

It is possible (of course) to include informative priors in regression models.
While any proper prior could be used, a common approach is to us an
analogue to the semi-conjugate normal model discussed in Chapter 3.

This prior is of the form

β ∼ N(β0, Σβ)

σ2 ∼ Inv−χ2(n0, σ
2
0)

While Σβ can be any valid variance-covariance matrix, often it will be
diagonal (e.g. Σβ = diag(σ2

β1
, . . . , σ2

βk
)), implying all parameters are

independent apriori.
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When putting a proper prior on β you often will want to use different
variances for the different parameters for a number of reasons

• The values of the individual βis will depend on the scale of the predictor
variables, xi. For example if you change the scale of an xi from pounds
to kilograms, you need to adjust the variance by a factor of 4.852.

• Different prior beliefs on the different βs

The analysis of this model needs be done by Monte Carlo techniques such
as the Gibbs Sampler, as the marginal posteriors aren’t nice.
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However the conditional posteriors are as

• β|σ2, y ∼ N(µ, Λ) with

Λ =
(

Σ−1
β +

1
σ2

XTX

)−1

µ = Λ
(

Σ−1
β β0 +

1
σ2

XTy

)

• σ2|β, y

σ2|β, y ∼ Inv−χ2

(
n0 + n,

n0σ
2
0 + ns2

n0 + n

)

where

s2 =
1
n
(y −Xβ)T (y −Xβ)
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Different Measurement Variance Structures

As mentioned earlier, the error structure of the observations does not have
to to be independent with equal variance. In general

y|β, Σy ∼ N(Xβ, Σy)

where Σy is a symmetric, positive definite matrix.

This matrix can come from many different approaches

• Variance matrix known up to a scalar factor

Σy = Qyσ
2

where Qy is a known fixed matrix and σ2 is unknown.

Inference in this case reduces to what we have seen before. Let Q
1/2
y be

a matrix square root of Qy (e.g. (Q1/2
y )TQ

1/2
y = Qy). Then
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Q−1/2
y y|β, σ2 ∼ N(Q−1/2

y Xβ, σ2I)

For example, if the p(β, σ2) ∝ σ−2 noninformative prior is used, the
earlier approach with

β̂ = (XTQ−1
y X)−1XTQ−1

y y

Vβ = (XTQ−1
y X)−1

s2 =
1

n− k
(y −Xβ̂)TQ−1

y (y −Xβ̂)

Note that the matrix inversions do not usually need to be calculated

directly as Q
1/2
y is usually determined by the Cholesky decomposition or

the Singular Value decomposition and the inverse can be based on these.
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One example where this approach is reasonable is Weighted regression
where

Qy = diag
(

1
w1

, . . . ,
1

wn

)

where wi are known as weights. This can occur if yi is the average of wi

observations.

• Parametric models

Instead of Qy being a fixed matrix, it can be a function of a parameter
φ. Examples of this include

– Equal correlation

Qy =




1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1



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– AR(1)

Qy =




1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1




If the p(β, σ2) ∝ σ−2 noninformative prior is used for β and σ2, the
previous results can be used to get p(β, σ2|φ, y). Then it can be shown
that in this case

p(φ|y) =
p(β, σ2, φ|y)
p(β, σ2|φ, y)

∝ p(φ)N(y|Xβ, σ2Qy)

Inv−χ2(σ2|n− k, s2)N(β|β̂, Vβσ2)

∝ p(φ)|Vβ|1/2(s2)−(n−k)/2

Note that β̂, Vβ, and s2 are functions of φ so the posterior density is
non-standard.
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If an informative prior is put on β and/or σ2, sampling will need to be
done by an MCMC routine. Gibbs is often useful here, particularly if
the N−Inv−χ2 prior is placed on β, σ2. In this case the conditional
posteriors are

– β|σ2, φ, y ∼ N(µ, Λ) with

Λ =
(

Σ−1
β +

1
σ2

XTQ−1
y X

)−1

µ = Λ
(

Σ−1
β β0 +

1
σ2

XTQ−1
y y

)

– σ2|β, φ, y

σ2|β, φ, y ∼ Inv−χ2

(
n0 + n,

n0σ
2
0 + ns2

n0 + n

)

where

s2 =
1
n
(y −Xβ)TQ−1

y (y −Xβ)
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Again β̂, Vβ, and s2 are functions of φ in these two conditional
posteriors.

– φ|β, σ2, y

This depends on the situation be will probably will have to be handled
by something like acceptance - rejection sampling as a conjugate
structure will be difficult in many situations

• Arbitrary matrices

It is possible for Σy to be an arbitrary, symmetric, positive definite matrix.
Depending on the form of the prior on β and Σy, the posterior p(β, Σy|y)
can be difficult to handle, leading to MCMC approaches. However there
are some cases where the posterior can be handled somewhat more easily.

– p(β|Σy) ∝ 1

β|Σy, y ∼ N((XTΣ−1
y X)−1XTy, (XTΣ−1

y X)−1)
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p(Σy|y) ∝ p(Σy)|(XTΣ−1
y X)|−1/2 exp

(
−1

2
(y −Xβ̂)TΣ−1

y (y −Xβ̂)
)

Usually this is difficult to handle, but is feasible if

Σy ∼ Inv−Wishartν(S−1)

as this is a conjugate distribution in this case.

– β|Σy ∼ N(β0, Σβ)

This has a similar structure to before as β|Σy, y ∼ N(µ, Λ) with

Λ =
(
Σ−1

β + XTΣ−1
y X

)−1

µ = Λ
(
Σ−1

β β0 + XTΣ−1
y y

)

Different Measurement Variance Structures 16



(Let Σy → ∞× I in above and the formula reduce to the uniform
prior case.)

And again p(Σy|y) will probably be tough to handle, except when
Σy ∼ Inv−Wishartν(S−1)

Posterior Predictive Distribution

As noted in the text, the posterior predictive distribution is more difficult as
you need to consider the correlation between y and ỹ.

However, the approach is the same regardless of the structure of Σy.

Assume that

(
y

ỹ

∣∣∣∣∣ X, X̃, θ

)
∼ N

((
Xβ

X̃β

)
,

(
Σy Σy,ỹ

Σỹ,y Σỹ

))
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Then ỹ|β, Σy, y ∼ N(µ, Λ) with

µ = X̃β + Σỹ,yΣ−1
y (y −Xβ)

Λ = Σỹ − Σỹ,yΣ−1
y Σy,ỹ

Thus simulation is not difficult, assuming that sampling from p(β, Σy) is
possible.

Also note that if yi are independent, then the formulas reduce to the simpler
cases we’ve seen before, except possibly for an adjustment if the yi don’t
have equal variance.
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