Linear Regression Models II

Statistics 220

Spring 2005

Copyright ©2005 by Mark E. Irwin

Comparing Regression Models

Model 1:

$$\begin{split} E[\text{CityFuel}] &= \beta_1 \text{Weight} + \beta_2 \text{EngSize} + \beta_3 \text{Domestic} \\ &+ \beta_4 I(\text{Type} = \text{Compact}) + \beta_5 I(\text{Type} = \text{Large}) + \beta_6 I(\text{Type} = \text{Midsize}) \\ &+ \beta_7 I(\text{Type} = \text{Small}) + \beta_8 I(\text{Type} = \text{Sporty}) + \beta_9 I(\text{Type} = \text{Van}) \end{split}$$

Model 2:

 $E[CityFuel] = \beta_1 Weight + \beta_2 EngSize + \beta_3 Domestic + \beta_4$

Do we get significantly better fit when we include the car type in the model. There are a couple of ways of examining this:

- Examine the distributions of $\beta_i \beta_j | y; \ i, j = 4, \dots, 9$ in Model 1
- Compare DICs for the two models.

Implementation:

Both models where examined with WinBUGS with the non-informative prior

$$p(\beta, \sigma^2) \propto \frac{1}{\sigma^2}$$

approximated by

$$\beta_i \sim N(0, 10^6)$$

 $\sigma^2 \sim \text{Inv-Gamma}(0.001, 0.001)$

Posterior distributions of $\beta_i - \beta_j | \mathbf{y}$

5 chains, each with 2000 iterations (first 1000 discarded), n.thin = 5, n.sims = 1000 iterations saved Time difference of 9 secs

	mean	sd	2.5%	25%	50%	75%	97.5%	Rhat	n.eff	
beta[1]	1.1	0.2	0.6	0.9	1.1	1.2	1.5	1	1000	
beta[2]	0.2	0.1	0.0	0.1	0.2	0.2	0.4	1	1000	
beta[3]	0.1	0.1	-0.1	0.0	0.1	0.1	0.3	1	710	
beta[4]	0.9	0.6	-0.1	0.6	0.9	1.3	2.1	1	1000	
beta[5]	0.8	0.7	-0.5	0.4	0.8	1.3	2.1	1	1000	
beta[6]	1.0	0.6	-0.2	0.6	1.0	1.5	2.2	1	1000	
beta[7]	0.7	0.5	-0.1	0.4	0.7	1.0	1.7	1	1000	
beta[8]	1.2	0.6	0.2	0.8	1.2	1.6	2.3	1	1000	
beta[9]	1.3	0.7	-0.1	0.8	1.3	1.8	2.7	1	1000	
sigma	0.4	0.0	0.4	0.4	0.4	0.4	0.5	1	370	
deviance	99.5	4.9	92.1	95.9	98.9	102.3	110.8	1	650	
pD = 11.	.8 and	1 DIC	C = 11	L1.3 (using	g the 1	rule, p	D = T	var(dev	viance)/2)

5 chains, each with 2000 iterations (first 1000 discarded), n.thin = 5, n.sims = 1000 iterations saved

Time difference of 5 secs

	mean	sd	2.5%	25%	50%	75%	97.5%	Rhat	n.eff	
beta[1]	1.4	0.1	1.1	1.3	1.4	1.5	1.7	1	1000	
beta[2]	0.1	0.1	-0.1	0.0	0.1	0.1	0.2	1	1000	
beta[3]	0.1	0.1	-0.1	0.0	0.1	0.2	0.3	1	1000	
beta[4]	0.3	0.3	-0.2	0.1	0.3	0.5	0.8	1	1000	
sigma	0.4	0.0	0.4	0.4	0.4	0.5	0.5	1	750	
deviance	107.6	3.1	103.2	105.3	107.2	109.4	114.7	1	1000	
pD = 4.7 and $DIC = 112.4$ (using the rule, $pD = var(deviance)/2$)										

Based on the distributions of $\beta_i - \beta_j | y$, it appears that some types of cars do get different gas mileage, such as Compacts and Vans or Small and Sporty.

However, from a prediction point of view, it doesn't seem to be a big difference as the increase in DIC for Model 2 is very small, suggesting that the we are not getting a great improvement in fit with the extra 5 parameters.

Including Prior Information

It is possible (of course) to include informative priors in regression models. While any proper prior could be used, a common approach is to us an analogue to the semi-conjugate normal model discussed in Chapter 3.

This prior is of the form

$$\beta \sim N(\beta_0, \Sigma_\beta)$$

 $\sigma^2 \sim \operatorname{Inv} - \chi^2(n_0, \sigma_0^2)$

While Σ_{β} can be any valid variance-covariance matrix, often it will be diagonal (e.g. $\Sigma_{\beta} = \operatorname{diag}(\sigma_{\beta_1}^2, \ldots, \sigma_{\beta_k}^2)$), implying all parameters are independent apriori.

When putting a proper prior on β you often will want to use different variances for the different parameters for a number of reasons

- The values of the individual β_i s will depend on the scale of the predictor variables, x_i . For example if you change the scale of an x_i from pounds to kilograms, you need to adjust the variance by a factor of 4.852.
- Different prior beliefs on the different β s

The analysis of this model needs be done by Monte Carlo techniques such as the Gibbs Sampler, as the marginal posteriors aren't nice. However the conditional posteriors are as

• $\beta | \sigma^2, y \sim N(\mu, \Lambda)$ with

$$\Lambda = \left(\Sigma_{\beta}^{-1} + \frac{1}{\sigma^2} X^T X\right)^{-1}$$
$$\mu = \Lambda \left(\Sigma_{\beta}^{-1} \beta_0 + \frac{1}{\sigma^2} X^T y\right)$$

•
$$\sigma^2|\beta, y$$

$$\sigma^2 | \beta, y \sim \operatorname{Inv} - \chi^2 \left(n_0 + n, \frac{n_0 \sigma_0^2 + ns^2}{n_0 + n} \right)$$

where

$$s^{2} = \frac{1}{n}(y - X\beta)^{T}(y - X\beta)$$

Different Measurement Variance Structures

As mentioned earlier, the error structure of the observations does not have to to be independent with equal variance. In general

 $y|\beta, \Sigma_y \sim N(X\beta, \Sigma_y)$

where Σ_y is a symmetric, positive definite matrix.

This matrix can come from many different approaches

• Variance matrix known up to a scalar factor

$$\Sigma_y = Q_y \sigma^2$$

where Q_y is a known fixed matrix and σ^2 is unknown.

Inference in this case reduces to what we have seen before. Let $Q_y^{1/2}$ be a matrix square root of Q_y (e.g. $(Q_y^{1/2})^T Q_y^{1/2} = Q_y$). Then

$$Q_y^{-1/2} y | \beta, \sigma^2 \sim N(Q_y^{-1/2} X \beta, \sigma^2 I)$$

For example, if the $p(\beta,\sigma^2)\propto\sigma^{-2}$ noninformative prior is used, the earlier approach with

$$\hat{\beta} = (X^T Q_y^{-1} X)^{-1} X^T Q_y^{-1} y$$

$$V_{\beta} = (X^T Q_y^{-1} X)^{-1}$$

$$s^2 = \frac{1}{n-k} (y - X\hat{\beta})^T Q_y^{-1} (y - X\hat{\beta})$$

Note that the matrix inversions do not usually need to be calculated directly as $Q_y^{1/2}$ is usually determined by the Cholesky decomposition or the Singular Value decomposition and the inverse can be based on these.

One example where this approach is reasonable is Weighted regression where

$$Q_y = \operatorname{diag}\left(\frac{1}{w_1}, \dots, \frac{1}{w_n}\right)$$

where w_i are known as weights. This can occur if y_i is the average of w_i observations.

• Parametric models

Instead of Q_y being a fixed matrix, it can be a function of a parameter ϕ . Examples of this include

- Equal correlation

$$Q_y = \begin{bmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{bmatrix}$$

$$Q_{y} = \begin{bmatrix} 1 & \rho & \rho^{2} & \rho^{3} \\ \rho & 1 & \rho & \rho^{2} \\ \rho^{2} & \rho & 1 & \rho \\ \rho^{3} & \rho^{2} & \rho & 1 \end{bmatrix}$$

If the $p(\beta, \sigma^2) \propto \sigma^{-2}$ noninformative prior is used for β and σ^2 , the previous results can be used to get $p(\beta, \sigma^2 | \phi, y)$. Then it can be shown that in this case

$$p(\phi|y) = \frac{p(\beta, \sigma^2, \phi|y)}{p(\beta, \sigma^2|\phi, y)}$$

$$\propto \frac{p(\phi)N(y|X\beta, \sigma^2 Q_y)}{\operatorname{Inv} - \chi^2(\sigma^2|n-k, s^2)N(\beta|\hat{\beta}, V_\beta \sigma^2)}$$

$$\propto p(\phi)|V_\beta|^{1/2}(s^2)^{-(n-k)/2}$$

Note that $\hat{\beta}, V_{\beta}$, and s^2 are functions of ϕ so the posterior density is non-standard.

If an informative prior is put on β and/or σ^2 , sampling will need to be done by an MCMC routine. Gibbs is often useful here, particularly if the N-Inv- χ^2 prior is placed on β, σ^2 . In this case the conditional posteriors are

$$\begin{split} -\beta |\sigma^2, \phi, y \sim N(\mu, \Lambda) \text{ with} \\ \Lambda &= \left(\Sigma_{\beta}^{-1} + \frac{1}{\sigma^2} X^T Q_y^{-1} X \right)^{-1} \\ \mu &= \Lambda \left(\Sigma_{\beta}^{-1} \beta_0 + \frac{1}{\sigma^2} X^T Q_y^{-1} y \right) \end{split}$$

 $-\sigma^2|eta,\phi,y|$

$$\sigma^2 | \beta, \phi, y \sim \operatorname{Inv} - \chi^2 \left(n_0 + n, \frac{n_0 \sigma_0^2 + n s^2}{n_0 + n} \right)$$

where

$$s^{2} = \frac{1}{n}(y - X\beta)^{T}Q_{y}^{-1}(y - X\beta)$$

Again $\hat{\beta}, V_\beta$, and s^2 are functions of ϕ in these two conditional posteriors.

-
$$\phi|\beta,\sigma^2,y$$

This depends on the situation be will probably will have to be handled by something like acceptance - rejection sampling as a conjugate structure will be difficult in many situations

• Arbitrary matrices

It is possible for Σ_y to be an arbitrary, symmetric, positive definite matrix. Depending on the form of the prior on β and Σ_y , the posterior $p(\beta, \Sigma_y|y)$ can be difficult to handle, leading to MCMC approaches. However there are some cases where the posterior can be handled somewhat more easily.

 $- p(\beta | \Sigma_y) \propto 1$

$$\beta | \Sigma_y, y \sim N((X^T \Sigma_y^{-1} X)^{-1} X^T y, (X^T \Sigma_y^{-1} X)^{-1})$$

$$p(\Sigma_y|y) \propto p(\Sigma_y) |(X^T \Sigma_y^{-1} X)|^{-1/2} \exp\left(-\frac{1}{2}(y - X\hat{\beta})^T \Sigma_y^{-1}(y - X\hat{\beta})\right)$$

Usually this is difficult to handle, but is feasible if

$$\Sigma_y \sim \text{Inv-Wishart}_{\nu}(S^{-1})$$

as this is a conjugate distribution in this case.

$$-\beta |\Sigma_y \sim N(\beta_0, \Sigma_\beta)$$

This has a similar structure to before as $\beta|\Sigma_y, y \sim N(\mu, \Lambda)$ with

$$\Lambda = \left(\Sigma_{\beta}^{-1} + X^{T}\Sigma_{y}^{-1}X\right)^{-1}$$
$$\mu = \Lambda \left(\Sigma_{\beta}^{-1}\beta_{0} + X^{T}\Sigma_{y}^{-1}y\right)$$

(Let $\Sigma_y \to \infty \times I$ in above and the formula reduce to the uniform prior case.)

And again $p(\Sigma_y|y)$ will probably be tough to handle, except when $\Sigma_y \sim \text{Inv-Wishart}_{\nu}(S^{-1})$

Posterior Predictive Distribution

As noted in the text, the posterior predictive distribution is more difficult as you need to consider the correlation between y and \tilde{y} .

However, the approach is the same regardless of the structure of Σ_y .

Assume that

$$\left(\begin{array}{c|c} y\\ \tilde{y} \\ \tilde{y} \end{array} \middle| X, \tilde{X}, \theta \right) \sim N\left(\left(\begin{array}{c|c} X\beta\\ \tilde{X}\beta \end{array}\right), \left(\begin{array}{c|c} \Sigma_y & \Sigma_{y,\tilde{y}}\\ \Sigma_{\tilde{y},y} & \Sigma_{\tilde{y}} \end{array}\right) \right)$$

Then $\tilde{y}|\beta, \Sigma_y, y \sim N(\mu, \Lambda)$ with

$$\mu = \tilde{X}\beta + \Sigma_{\tilde{y},y}\Sigma_{y}^{-1}(y - X\beta)$$
$$\Lambda = \Sigma_{\tilde{y}} - \Sigma_{\tilde{y},y}\Sigma_{y}^{-1}\Sigma_{y,\tilde{y}}$$

Thus simulation is not difficult, assuming that sampling from $p(\beta, \Sigma_y)$ is possible.

Also note that if y_i are independent, then the formulas reduce to the simpler cases we've seen before, except possibly for an adjustment if the y_i don't have equal variance.