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Hierarchical Linear Models

The linear regression model

y ∼ N(Xβ, Σy)

β|σ2 ∼ p(β|σ2)

σ2 ∼ p(σ2)

can be extended to more complex situations. We can put more complex
structures on the βs to better the describe the structure in the data.

In addition to allowing for more structure on the βs, it can also used to
model the measure error structure Σy.
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For example, consider the one-way random effects model discussed earlier

yij|θ, σ2 ind∼ N(θj, σ
2)

θj|µ, τ2 iid∼ N(µ, τ2)

This is an equivalent model to (after integrating out the θs)

y|µ, Σy ∼ N(µ, Σy)

where

Var(yi) = σ2 + τ2 = η2

Cov(yi1, yi2) =

{
ρη2 if i1 and i2 in group j

0 if i1 and i2 in different groups

Hierarchical Linear Models 2



and

ρ =
τ2

σ2 + τ2

In this framework, ρ is often referred to as the interclass correlation.

Note that this correspondence with the usual ANOVA formulation of the
model. See the text for the regression formulation of the equivalence.

This approach can be used the model the equal correlation structure

Σy = σ2




1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1




discussed last time as long as ρ ≥ 0 (each observation is in its own group).
(Note that in general that ρ can be positive. However this hierarchical
model can not be used to deal with this case.)
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General Hierarchical Linear Model

y|X, β,Σy ∼ N(Xβ, Σy)

β|Xβ, α, Σβ ∼ N(Xβα, Σβ)

α|α0, Σα) ∼ N(α0, Σα)

The first term is the likelihood, the second term is ’population distribution’
(process), and the third term is the ’hyperprior distribution’.

The X is the set of covariates for the responses y and Xβ is the set of the
covariates for the βs.

Often Σy = σ2I, Xβ = 1 and Σβ = σ2
βI.

Usually the hyprerprior parameters α0 and Σα are treated as fixed. Often
the noninformative prior p(α) ∝ 1 is used.
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Note that this can be treated as a single linear regression with the structure

y∗|X∗, γ,Σ∗ ∼ N(X∗γ, Σ∗)

with γ = (β α)T and

y∗ =




y

0
α0


 X∗ =




X 0
IJ −Xβ

0 IK


 Σ∗ =




Σy 0 0
0 Σβ 0
0 0 Σα




While this is sometimes useful for computation, as many conditional
distributions just fall out, it is less useful in terms of interpretation.
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Regression Example
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Soap Production Waste

• y: Amount of scrap

• x1: Line speed

• x2: Production line (1 or 2)

There are n1 = 15 observations
on Line 1 and n2 = 12
observations on Line 2.

Want to fit a model allowing different slopes and intercepts for each
production line (i.e. an interaction model).
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We can use the following model

yij|βj, σ
2
j

ind∼ N(β0j + β1jx1ij, σ
2
j ); i = 1, . . . , nj, j = 1, 2

β0j|α0
iid∼ N(α0, 100)

β1j|α1
iid∼ N(α1, 1)

α0 ∼ N(0, 106)

α1 ∼ N(0, 106)

This model forces the two regression lines to be somewhat similar, though
the prior form for the lines is vague.
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Note that this does fit into the framework mentioned earlier with β =
(β01 β11 β02 β12)T , α = (α0 α1)T and X and Xβ have the forms

X =




1 x111 0 0
...

1 x1n11 0 0
0 0 1 x112

...

0 0 1 x1n22




Xβ =




1 0
0 1
1 0
0 1




Regression Example 8



100 150 200 250 300

10
0

20
0

30
0

40
0

50
0

Line Speed

A
m

ou
nt

 o
f S

cr
ap

Line 1
Line 2

The posterior mean lines suggest that the intercepts are quite different but
the slopes of the lines are similar, though the slope for line 1 appears to be
a bit flatter.
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The similarity of the slopes is also suggested by the previous histograms and
the following posterior summary statistics. It also appears that variation
around the regression lines are similar for the two lines, though it appears
that the standard deviation is larger for line 1.

Parameter Mean SD

β01 95.57 22.56

β02 10.44 19.60

β01 1.156 0.107

β02 1.310 0.088

σ1 23.68 4.82

σ2 20.24 5.03

We can examine whether there is a difference between the slopes by
examining the distribution of β11 − β12 and a difference in variance about
the regression line by looking at the distribution of σ1

σ2
.
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The is marginal evidence for a difference in slopes as

P [β11 > β12|y] = 0.125

E[β11 > β12|y] = −0.154

Med(β11 > β12|y) = −0.150
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There is less evidence for a difference in σs as

P [σ1 > σ2|y] = 0.694

E[σ1 > σ2|y] = 1.24

Med(σ1 > σ2|y) = 1.17

This is also supported by comparing this model with the model where
σ2

1 = σ2
2.

Model DIC pD

Common σ2 247.2 5.6

Different σ2 249.2 7

In this case the smaller model with σ2
1 = σ2

2 appears to be giving the better
fit, though it is not a big difference.
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Fitting Hierarchical Linear Models

Not surprisingly, exact distributional results for these hierarchical models do
not exist and Monte Carlo methods are required.

The usual approach is some form of Gibbs sampler. There are a wide range
of approaches that can be used for sampling the regression parameters

• All-at-once Gibbs

All regression parameters γ = (β α)T are drawn jointly given y and the
variance parameters. While this is simple in theory, for some problems
the dimensionality can be huge and this can be inefficient.

• Scalar Gibbs

Draw each parameter separately. This can be much faster as the
dimension of each draw is small. Unfortunately, the chain may mix
slowly in some cases
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• Blocking Gibbs

Sample the regression parameters in blocks. This helps with the
dimensionality problems and will tend to mix faster than Scalar Gibbs.

• Scalar Gibbs with a linear transformation

By rotating the parameter space the Markov Chain will tend to mix
quickly. Thus working with

ξ = A−1(γ − γ0)

where A = V
1/2
γ will mix much better. After this transformation, sample

the component of ξ one by one and then transform back at the end of
each scan to give γ.

This approach can also be used with the Blocking Gibbs form.
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ANOVA

Many Hierarchical Linear Models are examples of ANOVA models. This
should not be surprising as any ANOVA model can be written as an
regression model where all predictor variables are indicator variables.

In this situation, the βs will fall in blocks, corresponding to the different
factors in the studies. For example consider a two way design with the
interaction terms

yijk
ind∼ N(µ + φi + θj + (φθ)ij, σ

2)

In this case there are three blocks, the main effects φi and θj and the
interactions (φθ)ij.
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A common approach is to put a separate prior structure on each block. For
this example, put the prior on the treatment effects

φi
iid∼ N(0, σ2

φ)

θj
iid∼ N(0, σ2

θ)

(φθ)ij
iid∼ N(0, σ2

φθ)

For the variance parameters, the conjugate hyperprior

σ2
φ ∼ Inv−χ2(νφ, σ2

0φ)

σ2
θ ∼ Inv−χ2(νθ, σ

2
0θ)

σ2
φθ ∼ Inv−χ2(νφθ, σ

2
0φθ)
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Note that as in standard ANOVA analyzes, the interaction terms are only
included if all of the lower order effects included in the interaction are in
the model. For example, for a three way ANOVA, the three-way interaction
will only be included if all the main effects and two-way interactions are
included in the model.
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ANOVA Example
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MPG: The effect of driver (4
levels) and car (5 levels) were
examined. Each driver drove each
car over a 40 mile test course
twice.

From the plot of the data, it
appears that both driver and car
have an effect on gas mileage.
As the pattern of MPG for each
driver seems to be the same
for each car (points are roughly
shifted up or down as the car
level changes) is appears that the
interaction effects are small.
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The standard ANOVA analysis agrees with this hypothesis as

Analysis of Variance Table

Response: MPG
Df Sum Sq Mean Sq F value Pr(>F)

Car 4 94.713 23.678 134.73 3.664e-14 ***
Driver 3 280.285 93.428 531.60 < 2.2e-16 ***
Car:Drive 12 2.446 0.204 1.16 0.3715
Residuals 20 3.515 0.176
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Inference for Bugs model at "mpg.bug"
5 chains, each with 32000 iterations (first 16000 discarded),
n.thin = 40, n.sims = 2000 iterations saved
Time difference of 23 secs

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
mu 29.8 2.1 25.4 28.5 30.0 31.2 33.4 1.1 84
phi[1] -3.0 1.9 -6.3 -4.1 -3.1 -1.9 1.5 1.0 99
phi[2] 4.2 1.9 1.0 3.1 4.1 5.3 8.8 1.0 98
phi[3] -1.1 1.9 -4.4 -2.2 -1.2 0.0 3.5 1.1 98
phi[4] 0.4 1.9 -3.0 -0.8 0.2 1.4 4.9 1.0 99
theta[1] -0.9 1.1 -3.0 -1.6 -1.0 -0.4 1.5 1.0 230
theta[2] 2.3 1.1 0.2 1.7 2.2 2.8 4.9 1.0 250
theta[3] -2.0 1.1 -4.1 -2.6 -2.0 -1.4 0.5 1.0 250
theta[4] 1.2 1.1 -0.9 0.6 1.1 1.8 3.7 1.0 220
theta[5] 0.0 1.1 -2.1 -0.6 0.0 0.6 2.5 1.0 220
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mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
phitheta[1,1] -0.1 0.2 -0.6 -0.2 -0.1 0.0 0.1 1.0 2000
phitheta[1,2] 0.1 0.2 -0.2 0.0 0.0 0.1 0.5 1.0 2000
phitheta[1,3] 0.0 0.1 -0.3 0.0 0.0 0.1 0.4 1.0 2000
phitheta[1,4] 0.0 0.1 -0.3 0.0 0.0 0.1 0.4 1.0 2000
phitheta[1,5] 0.0 0.2 -0.3 -0.1 0.0 0.1 0.3 1.0 1300
phitheta[2,1] 0.0 0.1 -0.3 0.0 0.0 0.1 0.4 1.0 2000
phitheta[2,2] 0.1 0.2 -0.2 0.0 0.0 0.1 0.4 1.0 1100
phitheta[2,3] 0.0 0.1 -0.4 -0.1 0.0 0.0 0.2 1.0 1600
phitheta[2,4] 0.0 0.1 -0.3 -0.1 0.0 0.1 0.3 1.0 2000
phitheta[2,5] 0.0 0.2 -0.4 -0.1 0.0 0.0 0.2 1.0 2000
phitheta[3,1] 0.1 0.2 -0.2 0.0 0.0 0.1 0.5 1.0 2000
phitheta[3,2] -0.1 0.2 -0.5 -0.2 -0.1 0.0 0.2 1.0 2000
phitheta[3,3] 0.0 0.1 -0.4 -0.1 0.0 0.0 0.3 1.0 2000
phitheta[3,4] 0.0 0.2 -0.3 -0.1 0.0 0.1 0.3 1.0 2000
phitheta[3,5] 0.1 0.2 -0.2 0.0 0.0 0.1 0.5 1.0 2000

ANOVA Example 22



mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
phitheta[4,1] 0.0 0.1 -0.3 -0.1 0.0 0.1 0.3 1.0 1900
phitheta[4,2] 0.0 0.1 -0.3 -0.1 0.0 0.1 0.3 1.0 2000
phitheta[4,3] 0.0 0.1 -0.2 0.0 0.0 0.1 0.4 1.0 2000
phitheta[4,4] 0.0 0.1 -0.3 -0.1 0.0 0.0 0.3 1.0 2000
phitheta[4,5] 0.0 0.1 -0.3 -0.1 0.0 0.1 0.3 1.0 2000
sigma 0.4 0.1 0.3 0.4 0.4 0.5 0.6 1.0 2000
sigmaphi 4.0 2.2 1.7 2.5 3.4 4.7 10.2 1.0 890
sigmatheta 2.2 1.2 1.0 1.5 1.9 2.6 5.0 1.0 2000
sigmaphitheta 0.1 0.1 0.0 0.1 0.1 0.2 0.4 1.0 1000
deviance 44.9 6.3 32.4 40.7 44.7 48.9 57.7 1.0 2000
pD = 20.1 and DIC = 65 (using the rule, pD = var(deviance)/2)
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Bugs model at "C:/Documents and Settings/Mark Irwin/My Documents/Harvard/Courses/Stat 220/R/mpg.bug", 5 chains, each with 32000 iterations
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