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Informative Priors

Binomial Model:

• y|π ∼ Bin(n, π)

• π is the success probability.

• Need prior p(π)

• Bayes used π ∼ U(0, 1)

• Any density function defined on [0, 1] would also be a valid prior for π.
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Possible choices are

1. Beta(a, b)
p(π) ∝ πa−1(1− π)b−1

2. Truncated N(µ, σ2)

p(π) ∝ 1
σ
φ

(
π − µ

σ

)
I(0 ≤ π ≤ 1)

3. Mixture

p(π) =
a

2
πa−1 +

b

2
(1− π)b−1
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The posteriors for these priors are

1. Beta(a, b)

p(π|y) ∝ πa−1(1− π)b−1πy(1− π)n−y = πa+y−1(1− π)b+n−y−1

So the posterior is Beta(a + y, b + n− y).

2. Truncated normal

p(π|y) ∝ 1
σ
φ

(
π − µ

σ

)
πy(1− π)n−yI(0 ≤ π ≤ 1)

This doesn’t have a nice form.
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3. Mixture

p(π|y) ∝
(

a

2
πa−1 +

b

2
(1− π)b−1

)
πy(1− π)n−y

=
a

2
πa+y−1(1− π)n−y +

b

2
πy(1− π)b+n−y−1

This is a mixtures of betas.
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Conjugate Priors

• The first case is an example of a conjugate prior.

• A prior is said to be conjugate to the sampling density if the resulting
posterior is a member of the same parametric family as the prior.

• In the first case: binomial likelihood × beta prior = beta posterior

• However the second example clearly isn’t conjugate.

• In the third case: binomial likelihood × power law mixture prior = beta
mixture posterior

This is almost conjugate but not quite.
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• Advantages of conjugate priors:

– Easy to deal with - mathematically and computationally

– Interpretable as additional data

For example, a Beta(a, b) prior in the binomial success problem can
be thought to be equivalent to seeing a data set earlier that had a
successes and b failures.

• Disadvantages of conjugate priors:

– Can be overly restrictive

– Some prior beliefs can not be described.
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For example, suppose you wanted to use a beta prior with binomial
data, but your prior beliefs matched
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There is no beta distribution that looks like this.
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About the closest you could get would be something that looks like
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which doesn’t get the bimodal nature correct.
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• Whether a conjugate prior exists depends on the form of the likelihood
function. Most cases do not have conjugate distributions.

• About the only case where conjugate prior are guaranteed to exist is
whether the data distribution is a member of the exponential family.
This includes many important cases, such as

– Normal
– Binomial, Multinomial
– Poisson
– Gamma
– Beta

For example, let y|θ ∼ N(θ, σ2), θ ∼ N(µ0, τ
2
0 ) (assume that σ2, µ0,

and τ2
0 are all known quantities). Then θ|y ∼ N(µ1, τ

2
1 ) where

µ1 =
1
τ2
0
µ0 + 1

σ2y

1
τ2
0

+ 1
σ2

and
1
τ2
1

=
1
τ2
0

+
1
σ2
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Summarizing Posterior Distributions

When doing an analysis, we need summaries of the posterior distribution.

In a univariate problem, such as for the binomial success probability or for
the normal mean (with known variance) a plot of the posterior density is
useful.

If the prior is conjugate, the plot is easy.

If the prior is non-conjugate, the plot isn’t much harder.

Examples (Wiarton Willie - n = 41, y = 37):
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• π ∼ U(0, 1) = Beta(1, 1)

π|y ∼ Beta(38, 5)
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• π ∼ Beta(3, 3)

π|y ∼ Beta(40, 7)
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• π ∼ N(µ = 0.5, σ2 = 0.01)I(0 ≤ π ≤ 1)
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• Mixture prior - π ∼ 1
2Beta(8, 2) + 1

2Beta(2, 8)

π|y ∼ 1
2Beta(45, 6) + 1

2Beta(39, 12)
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In three of the four examples, the posterior density has a nice form. However,
for the third one, the posterior density doesn’t.

We can get something for plotting very easily

p(θ|y) =
p(θ)p(y|θ)

p(y)

but

p(y) =
∫

p(θ)p(y|θ)dθ ≈
m∑

i=1

p(θ0 + ∆θi)p(y|θ0 + ∆θi)∆θ = c

i.e. calculate the unnormalized density at m equally spaced points on the
interval [θ0, θ1] where ∆θ = θ1−θ0

m
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Then

p(θ|y) ≈ p(θ)p(y|θ)
c

Note that this approximation will work well when ∆θ is small and m is
large.

What is classified as a small ∆θ and a large m depends on how smooth
p(θ)p(y|θ) is.

Of course other numerical quadrature methods (e.g. Simpson’s Rule) could
be used to calculate the normalization constant of the posterior.

Also this adjustment is only needed if you want compare this posterior
distribution to another distribution (e.g. the prior).

If you just want to see the shape of the posterior, just plot p(θ)p(y|θ) versus
θ. The correction just relabels the y axis on the plot.
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Numerical Summaries of Posterior Distributions

When summarizing a posterior distribution we are usually interested in two
things, location and spread.

• Measures of location:

There are three common measure of location used

– Posterior Mean: E[θ|y]
– Posterior Median: Med(θ|y)
– Posterior Mode: arg maxθ p(θ|y)

• These choices, among being common summaries of location, can also be
justified in a decision theory formulation. They are the optimal estimators
under different loss functions

– Posterior Mean: E[θ|y] = arg mina E[(θ − a)2|y]
– Posterior Median: Med(θ|y) = arg mina E[|θ − a||y]
– Posterior Mode: arg maxθ p(θ|y) = arg mina E[I(θ 6= a)|y] (0-1 loss)
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• Measures of spread:

The common choices for measuring spread are

– Var(θ|y)
– SD(θ|y)

Other possibilities, though less common are

– Posterior IQR
– Posterior MAD (Mean Absolute Deviation): E[|θ − E[θ|y]| |y]
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Credible Sets

It is also useful to find regions of the parameter space that accounts for
most of the posterior probability.

Let A ⊂ Θ be some subset of the parameter space for θ. Then A is a
100C% credible set for θ if

P [θ ∈ A|y] = C

The most common approach to credible sets are central credible intervals.
These are defined as the interval [cl, cu] such that

1− C

2
=

∫ cl

−∞
p(θ|y)dθ and

1− C

2
=

∫ ∞

cu

p(θ|y)dθ

An alternative is the 100C% highest posterior density (HPD) region, which
is defined as the smallest region of the parameter space with probability C.
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The central interval is usually easier to determine as it just involves finding
quantiles of the posterior distribution.

The HPD region is more difficult to calculate. It involves dealing with two
main steps

1. Determining Ac = {θ : p(θ|y) ≥ c}

2. Calculating P [θ ∈ Ac|y]

The HPD region is then given by the c where P [θ ∈ Ac|y] = C
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In the example graph, it wasn’t too bad since the posterior is unimodal.
However if the posterior is multimodal, Ac may be a bunch of disjoint sets
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Especially in big problems, determining the number of modes is difficult so
HPD regions are rarely used today.
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• π ∼ U(0, 1) = Beta(1, 1) π|y ∼ Beta(38, 5)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Wiarton Willie − U(0,1) prior

π

p(
π|

y)
Posterior
Likelihood
Prior

Distribution Mean Mode SD 95% Central Cred. Int.

Prior 0.5 ??? 0.289 (0.025, 0.975)

Posterior 0.884 0.902 0.048 (0.774, 0.960)
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• π ∼ Beta(3, 3) π|y ∼ Beta(40, 7)
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Prior 0.5 0.5 0.189 (0.147, 0.853)

Posterior 0.851 0.867 0.051 (0.737, 0.937)
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• π ∼ N(µ = 0.5, σ2 = 0.01)I(0 ≤ π ≤ 1)
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• π ∼ 1
2Beta(8, 2) + 1

2Beta(2, 8) π|y ∼ 1
2Beta(45, 6) + 1

2Beta(39, 12)
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Prior 0.5 ??? & ??? ??? (???, ???)

Posterior 0.823 ??? ??? (???, ???)
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Except for the situation where the prior is nice (e.g. Beta), there are not
nice formulas for many of the summaries.

Numerical methods are needed to calculate these

• Solving equations - Newton-Raphson, bisection, etc

• Optimization - Newton-Raphson, EM, etc

• Numerical Quadrature - Simpson’s Rule, Gaussian Quadrature, etc

• Combinations of these to determine credibility intervals

There is another approach that can be used as an alternative for most of
these - Simulation.

It can be used to find posterior means, variances, quantiles, etc for
parameters, and functions of parameters.
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30Example: Risk estimation in Command
and Control

The threat that enemy tank (at position
(xt, yt)) poses to a target (at position
(x0, y0)) depends on:

• the distance from the target

dt =
√

(xt − x0)2 + (yt − y0)2

• the damage function δ(dt), which is
usually a non-linear decreasing function
of dt.

Calculating E[δ(dt)], even by quadrature methods can be very difficult.

However approximating this expectation is easily done by simulation.
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