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Choosing the Likelihood Model

While much thought is put into thinking about priors in a Bayesian Analysis,
the data (likelihood) model can have a big effect.

Choices that need to be made involve

• Independence vs Exchangable vs More Complex Dependence

• Tail size, e.g. Normal vs tdf

• Probability of events
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Example: Probability of God’s Existance

Two different analyses - both using the prior P [God] = P [No God] = 0.5

Likelihood Ratio Components:

Di =
P [Datai|God]

P [Datai|No God]

Evidence (Datai) Di - Unwin Di - Shermer

Recognition of goodness 10 0.5

Existence of moral evil 0.5 0.1

Existence of natural evil 0.1 0.1

Intranatural miracles (prayers) 2 1

Extranatural miracles (resurrection) 1 0.5

Religious experiences 2 0.1
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P [God|Data]:

• Unwin: 2
3

• Shermer: 0.00025

So even starting with the same prior, the difference beliefs about what the
data says gives quite different posterior probabilities.

This is based on an analysis published in an July 2004 Scientific American
article. (Available on the course web site on the Articles page.)

Stephen D. Unwin is a risk management consultant who has done work in
physics on quantum gravity. He is author of the book The Probability of
God.

Michael Shermer is the publisher of Skeptic and a regular contributor to
Scientific American as author of the column Skeptic.
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Note in the article, Bayes’ rule is presented as

P [God|Data] =
P [God]D

P [God]D + P [No God]

See if you can show that this is equivalent to the normal version of Bayes’
rule, under the assumption that the components of the data model are
independent.
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Prior vs Likelihood vs Posterior

The posterior distribution can be seen as a compromise between the prior
and the data

In general, this can be seen based on the two well known relationships

E[θ] = E[E[θ|y]] (1)

Var(θ) = E[Var(θ|y)] + Var(E[θ|y]) (2)

The first equation says that our prior mean is the average of all possible
posterior means (averaged over all possible data sets).

The second says that the posterior variance is, on average, smaller than the
prior variance. The size of the difference depends on the variability of the
posterior means.
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This can be exhibited more precisely using examples

• Binomial Model - Conjugate prior

π ∼ Beta(a, b)

y|π ∼ Bin(n, π)

π|y ∼ Beta(a + y, b + n− y)

Prior mean:
E[π] =

a

a + b
= π̃

MLE:
π̂ =

y

n
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Then the posterior mean satisfies

E[π|y] =
a + b

a + b + n
π̃ +

n

a + b + n
π̂ = π̄

a weighted average of the prior mean and the sample proportion (MLE)

Prior variance:

Var(π) =
π̃(1− π̃)
a + b + 1

Posterior variance:

Var(π|y) =
π̄(1− π̄)

a + b + n + 1

So if n is large enough, the posterior variance will be smaller than the
prior variance.
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• Normal Model - Conjugate prior, fixed variance

θ ∼ N(µ0, τ
2
0 )

yi|θ iid∼ N(θ, σ2); i = 1, . . . , n

θ|y ∼ N(µn, τ2
n)

Then

µn =
1
τ2
0
µ0 + n

σ2 ȳ

1
τ2
0

+ n
σ2

and
1
τ2
n

=
1
τ2
0

+
n

σ2

So the posterior mean is a weighted average of the prior mean and a
sample mean of the data.
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The posterior mean can be thought of in two other ways

µn = µ0 + (ȳ − µ0)
τ2
0

σ2

n + τ2
0

= ȳ − (ȳ − µ0)
σ2

n
σ2

n + τ2
0

The first case has µn as the prior mean adjusted towards the sample
average of the data.

The second case has the sample average shrunk towards the prior mean.

In most problems, the posterior mean can be thought of as a shrinkage
estimator, where the estimate just based on the data is shrunk toward
the prior mean. The form of the shrinkage may not be able to be written
out in as quite a nice form for more general problems.
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In this example the posterior variance is never bigger than the prior
variance as

1
τ2
n

=
1
τ2
0

+
n

σ2
≥ 1

τ2
0

and
1
τ2
n

≥ n

σ2

The first part of this is thought of as

Posterior Precision = Prior Precision + Data Precision

The first inequality gives
τ2
n ≤ τ2

0

The second inequality gives

τ2
n ≤

σ2

n
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n = 5, y = 2, a = 4, b = 3
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E[π] =
4
7

π̂ =
2
5

E[π|y] =
6
12

= 0.5

Var(π) =
3
98

= 0.0306 Var(π|y) =
1
52

= 0.0192

SD(π) = 0.175 SD(π|y) = 0.139
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n = 20, y = 8, a = 4, b = 3
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= 0.0306 Var(π|y) = 0.0088

SD(π) = 0.175 SD(π|y) = 0.094

Prior vs Likelihood vs Posterior 12



n = 100, y = 40, a = 4, b = 3
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4
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2
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E[π|y] =
44
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= 0.411

Var(π) =
3
98

= 0.0306 Var(π|y) = 0.0022

SD(π) = 0.175 SD(π|y) = 0.047
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n = 1000, y = 400, a = 4, b = 3
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= 0.401

Var(π) =
3
98

= 0.0306 Var(π|y) = 0.0024

SD(π) = 0.175 SD(π|y) = 0.0154
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Prediction

Another useful summary is the posterior predictive distribution of a future
observation, ỹ

p(ỹ|y) =
∫

p(ỹ|y, θ)p(θ|y)dθ

In many situations, ỹ will be conditionally independent of y given θ. Thus
the distribution in this case reduces to

p(ỹ|y) =
∫

p(ỹ|θ)p(θ|y)dθ

In many situations this can be difficult to calculate, though it is often easy
with a conjugate prior.
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For example, with Binomial-Beta model, the posterior distribution of the
success probability is Beta(a1, b1) (for some a1, b1). Then the distribution
of the number of successes in m new trials is

p(ỹ|y) =
∫

p(ỹ|π)p(π|y)dπ

=
∫ 1

0

(
m

ỹ

)
πỹ(1− π)m−ỹ Γ(a1 + b1)

Γ(a1)Γ(b1)
πa1−1(1− π)b1−1dπ

=
(

m

ỹ

)
Γ(a1 + b1)
Γ(a1)Γ(b1)

Γ(a1 + ỹ)Γ(b1 + m− ỹ)
Γ(a1 + b1 + m)

Which is an example of the Beta-Binomial distribution.

The mean this distribution is

E[ỹ|y] = m
a1

a1 + b1
= mπ̃
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This can be gotten by applying

E[ỹ|y] = E[E[ỹ|π]|y] = E[mπ|y]

The variance of this can be gotten by

Var(ỹ|y) = Var(E[ỹ|π]|y) + E[Var(ỹ|π)|y]

= Var(mπ|y) + E[mπ(1− π)|y]

This is of the form

mπ̃(1− π̃){1 + (m− 1)τ2}
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One way of thinking about this is that there is two pieces of uncertainty in
predicting a new observation.

1. Uncertainty about the true success probability

2. Deviation of an observation from its expected value

This is more clear with the Normal-Normal model with fixed variance. As
we saw earlier, the posterior distribution is of the form

θ|y ∼ N(µn, τ2
n)

Then

p(ỹ|y) =
∫

1
σ
√

2π
exp

(
− 1

2σ2
(ỹ − θ)2

)
1

τn

√
2π

exp
(
− 1

2τ2
n

(θ − µn)2
)

dθ
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A little bit of calculus will show that this reduces to a normal density with
mean

E[ỹ|y] = µn = E[E[ỹ|µn]|y] = E[θ|y]

and variance

Var(ỹ|y) = τ2
n + σ2

= Var(E[ỹ|θ]|y) + E[Var(ỹ|θ)|y]

= Var(µn|y) + E[σ2|y]
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An analogue to this is the variance for prediction in linear regression. It is
exactly of this form

Var(ŷ|x) = σ2

(
1 +

1
n

+
(x− x̄)2

(n− 1)s2
x

)

Simulating the posterior predictive distribution

This is easy to do, assuming that you can simulate from the posterior
distribution of the parameter, which is usually feasible.

To do it involves two steps:

1. Simulate θi from θ|y; i = 1, . . . , m

2. Simulate ỹi from ỹ|θi (= ỹ|θi, y); i = 1, . . . , m

The pairs (θi, ỹi) are draws from the joint distribution θ, ỹ|y. Therefore the
ỹi are draws from ỹ|y.
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Why interest in the posterior predictive distribution?

• You might want to do predictions. For example, what will happen to a
stock in 6 months.

• Model checking: Is your model reasonable?

There are a number of ways of doing this. Future observations could be
compared with the posterior predictive distribution.

Another option might be something along the lines of cross validation. Fit
the model with part of the data and compare the remaining observation
to the posterior predictive distribution calculated from the sample used
for fitting.
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Other One Parameter Models

Poisson

Example: Prussian Cavalry Fatailities Due to Horse Kicks

10 Prussian cavalry corp were monitored for 20 years (200 Corp-Years) and
the number of fatalities due to horse kicks were recorded

x = # Deaths Number of Corp-Years with x Fatalities

0 109

1 65

2 22

3 3

4 1

Let yi, i = 1, . . . , 200 be the number of deaths in observation i.
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Assume that yi
iid∼ Poisson(θ). (This has been shown to be a good

description for this data). Then the MLE for θ is

θ̂ = ȳ =
122
200

= 0.61

This can be seen from

p(y|θ) =
200∏

i=1

1
yi!

θyie−θ ∝ θ
P

yie−nθ = θnȳe−nθ

Instead lets take a Bayesian approach. For a prior, lets use θ ∼
Gamma(α, β)

p(θ) =
βα

Γ(α)
θα−1e−βθ

Note that this is a conjugate prior for θ.
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The posterior density satisfies

p(θ|y) ∝ θnȳe−nθθα−1e−βθ = θnȳ+α−1e−(n+β)θ

which is proportional to a Gamma(α + nȳ, β + n) density

The mean and variance of a Gamma(α, β) are

E[θ] =
α

β
Var(θ) =

α

β2

So the posterior mean and variance in this analysis are

E[θ|y] =
α + nȳ

β + n
Var(θ|y) =

α + nȳ

(β + n)2

Similarly to before, the posterior mean is a weighted average of the prior
mean and the MLE (weights β and n).

Lets examine the posteriors under different prior choices
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n = 200, ȳ = 0.61, α = β = 0.5
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E[θ] = 1 θ̂ = 0.61 E[θ|y] = 0.611

Var(θ) = 2 Var(θ|y) = 0.0030

SD(θ) = 1.412 SD(θ|y) = 0.055
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n = 200, ȳ = 0.61, α = β = 1
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E[θ] = 1 θ̂ = 0.61 E[θ|y] = 0.612

Var(θ) = 1 Var(θ|y) = 0.0030

SD(θ) = 1 SD(θ|y) = 0.055
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n = 200, ȳ = 0.61, α = β = 10
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E[θ] = 1 θ̂ = 0.61 E[θ|y] = 0.629

Var(θ) = 0.1 Var(θ|y) = 0.0030

SD(θ) = 0.316 SD(θ|y) = 0.055
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n = 200, ȳ = 0.61, α = β = 100
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E[θ] = 1 θ̂ = 0.61 E[θ|y] = 0.74

Var(θ) = 0.01 Var(θ|y) = 0.0025

SD(θ) = 0.1 SD(θ|y) = 0.050
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One way to think of the gamma prior in this case is that you have a data
set with β observations with and observed Poisson count of α.

Note that the Gamma distribution can be parameterized many ways.

Often the scale parameter form λ = 1
β is used.

Also it can be parameterized in terms of mean, variance, and coefficient of
variation (only two are needed).

This gives some flexibility in thinking about the desired form of the prior for
a particular model.

In the example, I fixed the mean at 1 and let the variance decrease.
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