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Simulation - Joint and Marginal Distributions

Joint Distribution:

Want to simulate X, Y from p(x, y)

• Sample xi from p(x); i = 1, . . . , m

• Sample yi from p(y|xi); i = 1, . . . , m

Justification that this scheme actually draws from the joint distribution:

The joint empirical CDF of (xi, yi); i = 1, . . . , m is

P̂ (x, y) =
1
m

m∑

i=1

I(xi ≤ x, yi ≤ y) =
1
m

m∑

i=1

I(xi ≤ x)I(yi ≤ y)

Simulation - Joint and Marginal Distributions 1



The expected value of the ECDF is

E[P̂ (x, y)] = P [X ≤ x, Y ≤ y] = P (x, y)

since

E[I(xi ≤ x)I(yi ≤ y)] =
∫ ∞

−∞

∫ ∞

−∞
I(xi ≤ x)I(yi ≤ y)p(xi)p(yi|xi)dyidxi

=
∫ x

−∞

∫ y

−∞
p(xi, yi)dyidxi

= P [X ≤ x, Y ≤ y]

The ECDF is an unbiased estimate of the CDF.

Simulation - Joint and Marginal Distributions 2



In addition

Var(P̂ (x, y)) =
P (x, y)(1− P (x, y))

m
−→ 0

as m →∞, which implies P̂ (x, y) −→ P (x, y) in probability (WLLN).

Marginal Distribution:

Want to simulate Y based on p(x, y)

• Sample xi from p(x); i = 1, . . . , m

• Sample yi from p(y|xi); i = 1, . . . , m

• Keep only yi; i = 1, . . . , m
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Justification that this scheme actually draws from the marginal distribution
p(y):

The empirical CDF of yi; i = 1, . . . , m is

P̂ (y) =
1
m

m∑

i=1

I(yi ≤ y)

The expected value of the ECDF is

E[P̂ (y)] = P [Y ≤ y] = P (y)
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since

E[I(yi ≤ y)] =
∫ ∞

−∞

∫ ∞

−∞
I(yi ≤ y)p(xi)p(yi|xi)dyidxi

=
∫ y

−∞

∫ ∞

−∞
p(xi, yi)dxidyi

=
∫ y

−∞

∫ ∞

−∞
p(yi)dyi

= P [Y ≤ y]

Similarly to before

Var(P̂ (y)) =
P (y)(1− P (y))

m
−→ 0

as m →∞, which implies P̂ (y) −→ P (y) in probability (WLLN).
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Other One Parameter Models

1. Poisson

Example: Prussian Cavalry Fatailities Due to Horse Kicks

10 Prussian cavalry corp were monitored for 20 years (200 Corp-Years) and
the number of fatalities due to horse kicks were recorded

x = # Deaths Number of Corp-Years with x Fatalities

0 109

1 65

2 22

3 3

4 1

Let yi, i = 1, . . . , 200 be the number of deaths in observation i.
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Assume that yi|θ iid∼ Poisson(θ). (This has been shown to be a good
description for this data). Then the MLE for θ is

θ̂ = ȳ =
122
200

= 0.61

This can be seen from

p(y|θ) =
200∏

i=1

1
yi!

θyie−θ ∝ θ
P

yie−nθ = θnȳe−nθ

Instead lets take a Bayesian approach. For a prior, lets use θ ∼
Gamma(α, β)

p(θ) =
βα

Γ(α)
θα−1e−βθ

Note that this is a conjugate prior for θ.
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The posterior density satisfies

p(θ|y) ∝ θnȳe−nθθα−1e−βθ = θnȳ+α−1e−(n+β)θ

which is proportional to a Gamma(α + nȳ, β + n) density

The mean and variance of a Gamma(α, β) are

E[θ] =
α

β
Var(θ) =

α

β2

So the posterior mean and variance in this analysis are

E[θ|y] =
α + nȳ

β + n
Var(θ|y) =

α + nȳ

(β + n)2

Similarly to before, the posterior mean is a weighted average of the prior
mean and the MLE (weights β and n).

Lets examine the posteriors under different prior choices
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n = 200, ȳ = 0.61, α = β = 0.5
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Likelihood
Prior

E[θ] = 1 θ̂ = 0.61 E[θ|y] = 0.611

Var(θ) = 2 Var(θ|y) = 0.0030

SD(θ) = 1.412 SD(θ|y) = 0.055
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n = 200, ȳ = 0.61, α = β = 1
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Prior

E[θ] = 1 θ̂ = 0.61 E[θ|y] = 0.612

Var(θ) = 1 Var(θ|y) = 0.0030

SD(θ) = 1 SD(θ|y) = 0.055
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n = 200, ȳ = 0.61, α = β = 10
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Prior

E[θ] = 1 θ̂ = 0.61 E[θ|y] = 0.629

Var(θ) = 0.1 Var(θ|y) = 0.0030

SD(θ) = 0.316 SD(θ|y) = 0.055

Other One Parameter Models 11



n = 200, ȳ = 0.61, α = β = 100
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E[θ] = 1 θ̂ = 0.61 E[θ|y] = 0.74

Var(θ) = 0.01 Var(θ|y) = 0.0025

SD(θ) = 0.1 SD(θ|y) = 0.050
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One way to think of the gamma prior in this case is that you have a data
set with β observations with and observed Poisson count of α.

Note that the Gamma distribution can be parameterized many ways.

Often the scale parameter form λ = 1
β is used.

Also it can be parameterized in terms of mean, variance, and coefficient of
variation (only two are needed).

This gives some flexibility in thinking about the desired form of the prior for
a particular model.

In the example, I fixed the mean at 1 and let the variance decrease.
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Marginal data distribution for Poisson-Gamma Model

The marginal distribution of a single observation (also known as the prior
predictive distribution) in this model is

p(y) =
p(y|θ)p(θ)

p(θ|y)

=
1
y!θ

ye−θ βα

Γ(α+y)θ
(α+y)−1e−(β+1)θ

(β+1)α+y

Γ(α+y) θα+y−1e−βθ

=
(

α + y − 1
y

)(
β

β + 1

)α (
1

β + 1

)y

y = 0, 1, . . .

Which is the Negative Binomial distribution (Neg-Bin(α, β)).
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The mean and variance are

E[y] =
α

β
Var(y) =

α

β2
(β + 1) =

α

β

β + 1
β

Note that the variance of the Neg-Bin with mean α
β is greater than the

variance of a Poisson with the same mean (Var = α
β). This distribution can

be used for count data which is more dispersed than you would expect with
the Poisson distribution (like the Beta-Binomial).
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2. Exponential

Example: Air Conditioning Failures in a Boeing 720 (Proschan, 1963)

For plane 7910 (there are 13 planes in the complete dataset), the times
between failures (in hours) are 74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59,
27, 153, 26, 326 (n = 15)

Assume that yi|θ iid∼ Exp(θ) where θ = 1
E[y|θ] is often referred to as the rate

parameter (i.e. number of events per unit time). Note that the exponential
distribution is a special case of the gamma (Exp(θ) = Gamma(1, θ)).

p(y|θ) =
n∏

i=1

θe−yiθ = θne−nȳθ

which gives the MLE as

θ̂ =
1
ȳ
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For the example, θ̂ = 0.00825 (about 8 failures for every 1000 hours of flight
time). Note that 1

θ̂
= 121.27 hours is the average time between failures.

A conjugate prior for the exponential distribution is the gamma. If θ ∼
Gamma(α, β), then the posterior is

p(θ|y) ∝ θne−nȳθθα−1eβθ = θα+n−1eβ+nȳ

which is proportional to a Gamma(α + n, β + nȳ) density.

This gamma prior can be thought of as α − 1 exponential observations
totalling β.
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What prior for this example:

For the example, we can use some of the other planes to develop a gamma
prior for plane 7910. I took 4 of the planes and calculated the MLEs of θ
for each of them. The average of these was about 0.009 with a standard
deviation of 0.003. The Gamma distribution with this mean and standard
deviation has

α = 9 β = 1000

(Note: this is a complete hack)

As this is a complete hack, lets also use a less informative prior to see how
dependent on our answer is on our prior choice.

Since the above prior corresponds to 8 observations, lets use corresponding
to half as many observations (α = 5), with half as much time (β = 500)
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n = 15, ȳ = 121.27, α = 9, β = 1000
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E[θ] = 0.009 θ̂ = 0.00825 E[θ|y] = 0.00851

Var(θ) = 0.000009 Var(θ|y) = 0.000003

SD(θ) = 0.003 SD(θ|y) = 0.00173
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n = 15, ȳ = 121.27, α = 5, β = 500
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E[θ] = 0.01 θ̂ = 0.00825 E[θ|y] = 0.00862

Var(θ) = 0.0000200 Var(θ|y) = 0.0000037

SD(θ) = 0.00447 SD(θ|y) = 0.00193
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Suppose that we are interested in µ = 1
θ = E[y|θ], the expected time

between breakdowns. It is easy to get the expected value of 1
θ in the

conjugate prior case.

If x ∼ Gamma(α, β)

E

[
1
x

]
=

∫ ∞

0

1
x

βα

Γ(α)
xα−1e−βx =

β

α− 1

(Note that its not the reciprocal of E[x].)

Similarly

Var
(

1
x

)
=

β2

(α− 1)2(α− 2)
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For the example,

Prior E
[
1
θ|y

]
Var

(
1
θ|y

)
SD

(
1
θ|y

)

α = 9, β = 1000 122.56 682.83 26.13

α = 5, β = 500 122.05 827.60 28.77

In fact, we know more about distribution of 1
θ|y. It has an inverse gamma

distribution. So plotting the density, etc isn’t difficult.

However we can answer many questions by simulation.

Let θi
iid∼ p(θ|y); i = 1, . . . , m and suppose we are interested in λ = f(θ)

for some function f(·). Then

f(θi) = λi
iid∼ p(λ|y); i = 1, . . . , m

So for example, λ̄ is an unbiased estimate of E
[
1
θ|y

]
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Prior E
[
1
θ|y

]
Ê

[
1
θ|y

]
SD

(
1
θ|y

)
ŜD

(
1
θ|y

)

α = 9, β = 1000 122.56 123.68 26.13 27.00

α = 5, β = 500 122.05 122.10 28.77 27.57
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