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Prior Types

• Informative vs Non-informative

There has been a desire for a prior distributions that play a minimal in the
posterior distribution. These are sometime referred to a non-informative
or reference priors.
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These priors are often described as vague, flat, or diffuse.

In the case when the parameter of interest exists on a bounded interval
(e.g. binomial success probability π), the uniform distribution is an
“obvious” non-informative prior.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

Non−informative Prior

π

p(
π|

y)

0.0 0.2 0.4 0.6 0.8 1.0
0

1
2

3
4

5
6

Informative Prior

π

p(
π|

y)

Posterior
Likelihood
Prior

For this example, with the non-informative prior, Posterior = Likelihood
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However for a parameter that occurs on an infinite interval (e.g. a normal
mean θ), using a uniform prior on θ is problematic.

For the normal mean example, lets use the conjugate prior N(µ0, τ
2
0 ),

but with a very big variance τ2
0
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The posterior mean and precision are

µn =
1
τ2
0
µ0 + n

σ2 ȳ

1
τ2
0

+ n
σ2

and
1
τ2
n

=
1
τ2
0

+
n

σ2
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So if we let τ2
0 →∞, then

µn → ȳ and
1
τ2
n

→ n

σ2

This equivalent to the posterior being proportional to the likelihood,
which is what we get if p(θ) ∝ 1 (e.g. uniform).

This does not describe a valid probability density as

∫ ∞

−∞
dθ = ∞
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• Proper vs Improper

A prior is called proper if it is a valid probability distribution

p(θ) ≥ 0, ∀θ ∈ Θ and
∫

Θ

p(θ)dθ = 1

(Actually all that is needed is a finite integral. Priors only need to be
defined up to normalization constants.)

A prior is called improper if

p(θ) ≥ 0, ∀θ ∈ Θ and
∫

Θ

p(θ)dθ = ∞

If a prior is proper, so must the posterior.
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If a prior is improper, the posterior often is, i.e.

p(θ|y) ∝ p(θ)p(y|θ)

is a proper distribution for all y. Note that an improper prior may lead
to an improper prior. For many common problems, popular improper
reference priors will usually lead to proper posteriors, assuming there is
enough data.

For example

y1, . . . , yn|θ iid∼ N(θ, σ2)

p(θ) ∝ 1

will have a proper posterior as long n is at least 1.
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Non-informative Priors

While it may seem that picking a non-informative prior distribution might
be easy, (e.g. just use a uniform), its not quite that straight forward.

Example: Normal observations with known mean, but unknown variance

y1, . . . yn|σ iid∼ N(θ, σ2)

p(σ) ∝ 1

What is the equivalent prior on σ2

Aside: Let θ be a random variable with density p(θ) and let φ = h(θ) be a
one-one transformation. Then the density of φ satisfies

f(φ) = p(θ)
∣∣∣∣
dθ

dφ

∣∣∣∣ = p(θ)|h′(θ)|−1 where θ = h−1(φ)
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If h(σ) = σ2, h′(σ) = 2σ, then a uniform prior on σ leads to

p(σ2) =
1
2σ

which clearly isn’t uniform. This implies that our prior belief is that the
variance should be small

Similarly, if there is a uniform prior on σ2, the equivalent prior on σ is

p(σ) = 2σ

This implies that we believe sigma to be large.
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One way to think about what is happening
is to look at what happens to intervals of
equal measure.

In the case σ2 being uniform, an interval
[a, a + 0.1] must have the same prior
measure as the interval [0.1, 0.2].

When we transform to σ, the prior
measure on it must have intervals
[
√

a,
√

a + 0.1] having equal measure.

But note that the length of the interval
[
√

a,
√

a + 0.1] is a decreasing function of
a, which agrees with the increasing density
in σ.

So when talking about non-informative priors you need to think about on
what scale.
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Jeffreys’ Priors

Can we pick a prior where the scale the parameter is measured in doesn’t
matter.

Jeffreys’ principle states that any rule for determining the prior density p(θ)
should yield an equivalent result if applied to the transformed parameter.

That is applying

p(φ) = p(θ)
∣∣∣∣
dθ

dφ

∣∣∣∣ = p(θ)|h′(θ)|−1 where θ = h−1(φ)

should give the same answer as dealing directly with the transformed model

p(y, φ) = p(φ)p(y|φ)
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Applying this principle gives

p(θ) = [J(θ)]1/2

where J(θ) is the Fisher information for θ

J(θ) = E

[(
d log p(y|θ)

dθ

)2

|θ
]

= −E

[
d2 log p(y|θ)

dθ2
|θ

]

Why does this work?

It can be shown that (see page 63)

J(φ) = J(θ)
∣∣∣∣
dθ

dφ

∣∣∣∣
2
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so

p(φ) = p(θ)
∣∣∣∣
dθ

dφ

∣∣∣∣

For example, for the normal example with unknown variance, the Jeffreys’
prior for the standard deviation σ is

p(σ) ∝ 1
σ

Alternative descriptions under different parameterizations for the variability
are

p(σ2) ∝ 1
σ2

p(log σ2) ∝ p(log σ) ∝ 1
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For exponential data (yi
iid∼ Exp(θ); θ = 1

E[y|θ]), the Jeffreys’ prior is

p(θ) =
1
θ

If you wish to parameterize in terms of the mean (λ = 1
θ), the Jeffreys’ prior

is

p(λ) =
1
λ

For parameters with infinite parameter spaces (like a normal mean
or variance), the Jeffrey’s prior is often improper under the usual
parameterizations.

As we have seen, different approaches may lead to different non-informative
priors.
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Pivotal Quantities

There are some situations where the common approaches give the same
non-informative distributions.

• Location Parameter

Suppose that the density of p(y− θ|θ) is a function that is free of θ, call
it f(u). For example, if y ∼ N(µ, 1),

f(u) =
1√
2π

e−u2/2

Then y − θ is known as a pivotal quantity and θ is known as a pure
location parameter.

In this situation, a reasonable approach would assume that a non-
informative prior would give f(y− θ) as the posterior density of y− θ|y.
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This gives

p(y − θ|y) ∝ p(θ)p(y − θ|θ)

which implies p(θ) ∝ 1 (i.e. θ is uniform)

• Scale parameters

Suppose that the density of p(y/θ|θ) is a function that is free of θ, call
it g(u). For example, if y ∼ N(0, σ2),

f(u) =
1√
2π

e−u2/2

In this case y/θ is also a pivotal quantity and θ is known as a pure scale
parameter.
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If we follow the same approach as to above to where g(y/θ) as the
posterior, this gives

p(θ|y) =
y

θ
p(y|θ)

which implies p(θ) ∝ 1
θ

The standard deviation from a normal distribution and the mean of an
exponential distribution are scale parameters.

Using the earlier result for the standard deviation, it implies that in some
sense, the “right” scale for a scale parameter θ is log θ as

p(θ) ∝ 1
θ

p(θ2) ∝ 1
θ2

p(log θ) ∝ 1
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Note that pivotal quantities also come into standard frequentist inference.

Examples involving y1, . . . , yn
iid∼ N(µ, σ2) are

√
n
ȳ − µ

s
∼ tn−1

(n− 1)s2

σ2
∼ χ2

n−1

The standard confidence intervals and hypothesis tests use the fact that
these are pivotal quantities.
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Multiparameter Models

Most analyzes we wish to perform involve multiple parameters

• yi
iid∼ N(µ, σ2)

• Multiple Regression: yi|xi
ind∼ N(xt

iβ, σ2)

• Logistic Regression: yi|xi
ind∼ Bern(pi) where logit(pi) = β0 + β1xi

In these cases we want to assume all of the parameters are unknown and
want to perform inference on some or all of them.

An example of the case, where only some of them may be of interest is
multiple regression. Usually only the regression parameters β are of interest.
The measurement variance σ2 is often considered as a nuisance parameter.
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Lets consider the case with two parameters θ1 and θ2 and that only θ1 is
of interest. An example of this would be N(µ, σ2) data where θ1 = µ and
θ2 = σ2.

Want to base our inference on p(θ1|y). We can get at this a couple of ways.
First we can start with the joint posterior

p(θ1, θ2|y) ∝ p(y|θ1, θ2)p(θ1, θ2)

This gives

p(θ1|y) =
∫

p(θ1, θ2|y)dθ2

We can also get it by

p(θ1|y) =
∫

p(θ1|θ2, y)p(θ2|y)dθ2
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This implies that distribution of θ1 can be considered a mixture of the
conditional distributions, averaged over the nuisance parameter.

Note that this marginal conditional distribution is often difficult to determine
explicitly. Normally it needs to be examined by Monte Carlo methods.

Example: Normal Data

yi
iid∼ N(µ, σ2)

For a prior, lets assume that µ and σ2 are independent and use the standard
non-informative priors

p(µ, σ2) = p(µ)p(σ2) ∝ 1
σ2
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So the joint posterior satisfies

p(µ, σ2) ∝ 1
σ2

n∏

i=1

1
σ

exp
(
− 1

2σ2
(yi − µ)2

)

=
1

σn+2
exp

(
− 1

2σ2

[
n∑

i=1

(yi − ȳ)2 + n(ȳ − µ)2
])

=
1

σn+2
exp

(
− 1

2σ2

[
(n− 1)s2 + n(ȳ − µ)2

])

where s2 is the sample variance of the yi’s. Note that the sufficient statistics
are ȳ and s2.

• The conditional distribution p(µ|σ, y)

Note that we have already derived this as this is just the fixed and known
variance case. So
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µ|σ, y ∼ N

(
ȳ,

σ2

n

)

We can also get it by looking at the joint posterior. The only part that
contains µ looks like

p(µ|σ, y) ∝ exp
(
− n

2σ2
(µ− ȳ)2

)

which is proportional to a N
(
ȳ, σ2

n

)
density.

• The marginal posterior distribution p(σ2|y)

To get this, we must integrate µ out of the joint posterior.
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p(σ2|y) ∝
∫

1
σn+2

exp
(
− 1

2σ2
[(n− 1)s2 + n(ȳ − µ)2]

)
dµ

=
1

σn+2
exp

(
− 1

2σ2
(n− 1)s2

) ∫
exp

(
− n

2σ2
(ȳ − µ)2

)
dµ

The piece left inside the integral is
√

2πσ2/n times the N
(
ȳ, σ2

n

)
density

which gives

p(σ2|y) ∝ 1
σn+2

exp
(
− 1

2σ2
(n− 1)s2

) √
2πσ2/n

∝ 1
(σ2)(n+1)/2

exp
(
− 1

2σ2
(n− 1)s2

)
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Which is a scaled inverse-χ2 density

σ2|y ∼ Inv − χ2(n− 1, s2)

A random variable θ ∼ Inv − χ2(n− 1, s2) if

(n− 1)s2

θ
∼ χ2

n−1

Note that this result agrees with the standard frequentist result on the
sample variance. However this shouldn’t be surprising using the results on
non-informative priors, particularly the result involving pivotal quantities.

• The marginal posterior distribution p(σ2|y)

Now that we have p(µ|σ2, y) and p(σ2|y), inference on µ isn’t difficult.
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One method is to use the Monte Carlo approach discussed earlier

1. Sample σ2
i from p(σ2|y)

2. Sample µi from p(µ|σ2
i , y)

Then µ1, . . . , µm is a sample from p(µ|y).

Note that in this case, it is actually possible to derive the exact density
of p(µ|y).

In this case

p(µ|y) =
∫

p(µ, σ2|y)dσ2

is tractable. With the substitution z = A
2σ2 where A = (n− 1)s2 +n(ȳ−

µ)2, leaves a integral involving the gamma density (see the book, page
76).
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Cranking though this leaves

p(µ|y) ∝ 1
[
1 + n(µ−ȳ)2

(n−1)s2

]n/2

a tn−1(ȳ, s2

n ) density.

Or

µ− ȳ

s/
√

n
|y ∼ tn−1

which corresponds to the standard result used for inference on a
population mean

ȳ − µ

s/
√

n
|µ ∼ tn−1
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