
Multiparameter Models - Normal Data

Statistics 220

Spring 2005

Copyright c©2005 by Mark E. Irwin



Normal Inference Models

Most analyzes we wish to perform involve multiple parameters

• yi
iid∼ N(µ, σ2)

• Multiple Regression: yi|xi
ind∼ N(xt

iβ, σ2)

• Logistic Regression: yi|xi
ind∼ Bern(pi) where logit(pi) = β0 + β1xi

In these cases we want to assume all of the parameters are unknown and
want to perform inference on some or all of them.

An example of the case, where only some of them may be of interest is
multiple regression. Usually only the regression parameters β are of interest.
The measurement variance σ2 is often considered as a nuisance parameter.
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Lets consider the case with two parameters θ1 and θ2 and that only θ1 is
of interest. An example of this would be N(µ, σ2) data where θ1 = µ and
θ2 = σ2.

Want to base our inference on p(θ1|y). We can get at this a couple of ways.
First we can start with the joint posterior

p(θ1, θ2|y) ∝ p(y|θ1, θ2)p(θ1, θ2)

This gives

p(θ1|y) =
∫

p(θ1, θ2|y)dθ2

We can also get it by

p(θ1|y) =
∫

p(θ1|θ2, y)p(θ2|y)dθ2
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This implies that distribution of θ1 can be considered a mixture of the
conditional distributions, averaged over the nuisance parameter.

Note that this marginal conditional distribution is often difficult to determine
explicitly. Normally it needs to be examined by Monte Carlo methods.

Example: Normal Data

yi
iid∼ N(µ, σ2)

For a prior, lets assume that µ and σ2 are independent and use the standard
non-informative priors

p(µ, σ2) = p(µ)p(σ2) ∝ 1
σ2
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So the joint posterior satisfies

p(µ, σ2) ∝ 1
σ2

n∏

i=1

1
σ

exp
(
− 1

2σ2
(yi − µ)2

)

=
1

σn+2
exp

(
− 1

2σ2

[
n∑

i=1

(yi − ȳ)2 + n(ȳ − µ)2
])

=
1

σn+2
exp

(
− 1

2σ2

[
(n− 1)s2 + n(ȳ − µ)2

])

where s2 is the sample variance of the yi’s. Note that the sufficient statistics
are ȳ and s2.
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• The conditional distribution p(µ|σ2, y)

Note that we have already derived this as this is just the fixed and known
variance case. So

µ|σ2, y ∼ N

(
ȳ,

σ2

n

)

We can also get it by looking at the joint posterior. The only part that
contains µ looks like

p(µ|σ2, y) ∝ exp
(
− n

2σ2
(µ− ȳ)2

)

which is proportional to a N
(
ȳ, σ2

n

)
density.
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• The marginal posterior distribution p(σ2|y)

To get this, we must integrate µ out of the joint posterior.

p(σ2|y) ∝
∫

1
σn+2

exp
(
− 1

2σ2
[(n− 1)s2 + n(ȳ − µ)2]

)
dµ

=
1

σn+2
exp

(
− 1

2σ2
(n− 1)s2

) ∫
exp

(
− n

2σ2
(ȳ − µ)2

)
dµ

The piece left inside the integral is
√

2πσ2/n times the N
(
ȳ, σ2

n

)
density

which gives

p(σ2|y) ∝ 1
σn+2

exp
(
− 1

2σ2
(n− 1)s2

) √
2πσ2/n

∝ 1
(σ2)(n+1)/2

exp
(
− 1

2σ2
(n− 1)s2

)
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Which is a scaled inverse-χ2 density

σ2|y ∼ Inv−χ2(n− 1, s2)

A random variable θ ∼ Inv−χ2(ν, s2) if

νs2

θ
∼ χ2

ν

Note that this result agrees with the standard frequentist result on the
sample variance. However this shouldn’t be surprising using the results on
non-informative priors, particularly the result involving pivotal quantities.
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• The marginal posterior distribution p(µ|y)

Now that we have p(µ|σ2, y) and p(σ2|y), inference on µ isn’t difficult.

One method is to use the Monte Carlo approach discussed earlier

1. Sample σ2
i from p(σ2|y)

2. Sample µi from p(µ|σ2
i , y)

Then µ1, . . . , µm is a sample from p(µ|y).

Note that in this case, it is actually possible to derive the exact density
of p(µ|y).

In this case

p(µ|y) =
∫

p(µ, σ2|y)dσ2

is tractable. With the substitution z = A
2σ2 where A = (n− 1)s2 +n(ȳ−

µ)2, leaves a integral involving the gamma density (see the book, page
76).
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Cranking though this leaves

p(µ|y) ∝ 1
[
1 + n(µ−ȳ)2

(n−1)s2

]n/2

a tn−1(ȳ, s2

n ) density.

Or

µ− ȳ

s/
√

n
|y ∼ tn−1

which corresponds to the standard result used for inference on a
population mean

ȳ − µ

s/
√

n
|µ ∼ tn−1
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• Posterior predictive distribution p(ỹ|y)

p(ỹ|y) =
∫ ∫

p(ỹ|µ, σ2, y)p(µ, σ2|y)dµdσ2

=
∫ [∫

p(ỹ|µ, σ2, y)p(µ|σ2, y)dµ

]
p(σ2|y)dσ2

=
∫

p(ỹ|σ2, y)p(σ2|y)dσ2

So we can figure this out by first integrating out µ, giving p(ỹ|σ2, y). By
tweaking the earlier stuff on the normal mean with a fixed variance, we
know

ỹ|σ2, y ∼ N(ȳ, (1 + 1
n)σ2)

We can also show this by an equivalent method to the way we derived

µ|σ2, y ∼ N(ȳ, σ2

n )
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Then using the same method we used to get p(µ|y), we get that

ỹ|y ∼ tn−1(ȳ, (1 + 1
n)s2)

This matches with the prediction interval formula you would use in
ANOVA (though it is something you don’t see very often).
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Example: South Bend Maximum
Rainfall

30 years (1941 - 1970) of maximum
yearly rainfall at South Bend Indiana.

ȳ = 2.367 s = 0.7545 s2 = 0.5692

Based on a normal scores plot, a
normality assumption for this data
doesn’t seem unreasonable. This is
a bit surprising as one would expect
something closer to one of the three
extreme value distributions (Gumbel,
Frechet, or Weibull).
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So the posterior distribution of the mean maximum rainfall is
t29(2.367, 0.0190).

0 1 2 3 4 5

0.
0

1.
0

2.
0

µ

p(
µ|

y)

The posterior mean and standard deviation are

E[µ|y] = 2.367 SD(µ|y) = 0.143 =
s√
n

√
n− 1
n− 3
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A 100(1− α)% central credibility interval for µ is given by

ȳ ± t∗
s√
n

where t∗ is the 1− α
2 quantile of the tn−1(0, 1) distribution. These are what

are tabled in every intro stat text. For the example, a 95% credibility for
the mean maximum rainfall is

2.367± 2.045
0.7545√

30
= (2.085, 2.649)
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The posterior predictive distribution of new observations of yearly maximum
rainfall is t29(2.367, 0.558).
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A 95% credibility interval for new observations is (0.798, 3.936). The is
one observation outside this interval (4.69 in).
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Inverse Gamma and Inverse Chi-square Distributions

• Gamma Distribution (Gamma(α, β))

p(y|α, β) =
βα

Γ(α)
yα−1e−βy

E[y] =
α

β
Var(y) =

α

β2

• Chi-square Distribution (χ2
ν = Gamma

(
ν
2,

1
2

)
)

p(y|ν) =
2ν/2

Γ(ν/2)
yν/2−1e−y/2

E[y] = ν Var(y) = 2ν
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• Inverse Gamma (Inv−gamma(α, β))

y ∼ Inv−gamma(α, β) if 1
y ∼ Gamma(α, β)

p(y|α, β) =
βα

Γ(α)
y−(α+1)e−β/y

CDF: PIG(y, α, β) = 1− PG

(
1
y, α, β

)

Quantile Function P−1
IG (p, α, β) = 1

P−1
G

(1−p,α,β)

These are based on the fact that if X = 1
Y

P [X ≤ x] = P

[
Y ≥ 1

x

]
= 1− P

[
Y ≤ 1

x

]

E[y] =
β

α− 1
Var(y) =

β2

(α− 1)2(α− 2)
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• Inverse Chi-square (Inv−χ2
ν)

y ∼ Inv−χ2
ν if 1

y ∼ χ2
ν

Note that Inv−χ2
ν = Inv−gamma

(
ν
2,

1
2

)

p(y|ν) =
2−ν/2

Γ(ν/2)
y−(ν/2+1)e−1/2y

CDF: PIχ2(y, ν) = 1− Pχ2(1
y, ν)

Quantile Function P−1
Iχ2(p, ν) = 1

P−1

χ2 (1−p,ν)

E[y] =
1

ν − 2
Var(y) =

2
(ν − 2)2(ν − 4)

Inverse Gamma and Inverse Chi-square Distributions 18



• Scaled Inverse Chi-square (Inv−χ2(ν, s2))

y ∼ Inv−χ2(ν, s2) if νs2

y ∼ χ2
ν

Note that Inv−χ2(ν, s2) = Inv−gamma
(

ν
2,

ν
2s

2
)

p(y|ν) =

(
ν
2

)ν/2

Γ(ν/2)
sνy−(ν/2+1)e−νs2/2y

CDF: PIχ2(y, ν, s2) = 1− Pχ2(νs2

y , ν)

Quantile Function P−1
Iχ2(p, ν) = νs2

P−1

χ2 (1−p,ν)

E[y] =
ν

ν − 2
s2 Var(y) =

2ν2

(ν − 2)2(ν − 4)
s4 Mode(y) =

ν

ν + 2
s2

Note that this is a conjugate prior for the N(µ, σ2) model with fixed µ.
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Back to Normal Inference Models
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The marginal posterior distribution
p(σ2|y)

As discussed earlier,

σ2|y ∼ Inv−χ2(n− 1, s2)

For this example

σ2|y ∼ Inv−χ2(29, 0.5692)

E[σ2|y] = 0.6114 Var(σ2|y) = 0.2990 SD(σ2|y) = 0.1729

A 95% central credibility interval is (0.3610, 1.0287)
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Normal Inference Models - Informative Priors

• Conjugate Prior

Want to find a prior such that p(µ, σ2|y) is of the same form as p(µ, σ2).
One possibility is the two-stage prior

µ|σ2 ∼ N

(
µ0,

σ2

κ0

)

σ2 ∼ Inv−χ2(ν0, σ
2
0)

The joint density is

p(µ, σ2) ∝ 1
σ

1
(σ2)ν0/2+1

exp
(
− 1

2σ2
[ν0σ

2
0 + κ0(µ− µ0)2]

)
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This has been labelled as N−Inv−χ2(µ0,
σ2

0
κ0

; ν0, σ
2
0) distribution

One way of think of this prior is that we have κ0 observations with an
average of µ0 and another ν0 + 1 with a sample variance of σ2

0.

One important thing to note is that with this prior, µ and σ2 are
dependent (i.e. p(µ|σ2) is a function of σ2. Since this happens to be a
conjugate prior, it also implies that µ and σ2 are dependent aposteriori.

This has a different feel from the standard frequentist analysis where ȳ
and s2 are independent.
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The posterior density satisfies

p(µ, σ2|y) ∝ 1
σ

1
(σ2)ν0/2+1

exp
(
− 1

2σ2
[ν0σ

2
0 + κ0(µ− µ0)2]

)

× 1
(σ2)n/2

exp
(
− 1

2σ2
[(n− 1)s2 + n(ȳ − µ)2]

)

∝ 1
σ

1
(σ2)νn/2+1

exp
(
− 1

2σ2
[νnσ2

n + κn(µ− µn)2]
)

The posterior distribution is N−Inv−χ2(µn,
σ2

n
κn

; νn, σ2
n) where

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ

κn = κ0 + n

νn = ν0 + n

νnσ2
n = ν0σ

2
0 + (n− 1)s2 +

κ0n

κ0 + n
(ȳ − µ0)2
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p(µ|σ2, y):

By using that p(µ|σ2, y) ∝ p(µ, σ2|y), by collecting terms involving µ,
we get

µ|σ2, y ∼ N

(
µn,

σ

κn

)

Note that that the mean and variance can be written as

µn =
κ0
σ2µ0 + n

σ2 ȳ
κ0
σ2 + n

σ2

σ2
n =

1
κ0
σ2 + n

σ2

which matches with the fixed variance case discuss earlier (as it should).

Normal Inference Models 24



p(σ2|y):

σ2|y ∼ Inv−χ2(νn, σ2
n)

This can be seen by the same way p(σ2|y) was shown in the non-
informative prior case or by recognizing the N−Inv−χ2 form of the joint
density.

p(µ|y):

As mentioned before, this can be determined by simulation. However in
this case an exact answer can be determined by integrating out σ2 from
the joint density (as in the non-informative case), we get

µ|y ∼ tvn

(
µn,

σ2
n

κn

)
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Example analysis:

Prior choice: Let’s assume that maximum rainfall should fall between
1 and 4 inches and that the distribution should be roughly symmetric.
This implies that µ0 = 2.5. Also lets assume that this is based on κ0 = 5
observations. For σ, let σ2

0 = 0.75 and ν0 = 4 (Why these, I don’t know.
We need numbers).
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µ|y ∼ t35(2.386, 0.0165):
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Informative
Non−informative
Informative Prior

Prior E[µ|y] SD(µ|y) 95% Cred. Int.

Non-informative 2.367 0.143 (2.085, 2.649)

Informative 2.386 0.132 (2.125, 2.647)
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σ2|y ∼ Inv−χ2(34, 0.5760)
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)
Informative
Non−informative
Informative Prior

Prior E[σ2|y] SD(σ2|y) 95% Cred. Int.

Non-informative 0.6114 0.1729 (0.3610, 1.0287)

Informative 0.6120 0.1580 (0.3768, 0.9887)
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