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Normal Inference Models - Semiconjugate Prior

Another popular prior is

µ|σ2 ∼ N(µ0, τ
2
0 )

σ2 ∼ Inv−χ2(ν0, σ
2
0)

In this case, µ and σ2 are independent apriori. This prior is useful when
the prior information on µ isn’t thought of in terms of a number of prior
measurements.

Note that this isn’t a conjugate prior. The posterior is not the product of
normal and Inv−χ2 densities. In fact the posterior is not particularly nice,
in that parts of it do not reduce to standard densities.
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p(µ|σ2, y):

Given that σ2 is fixed, this is a case we have already seen

µ|σ2, y ∼ N(µn, τ2
n)

where

µn =
1
τ2
0
µ0 + n

σ2 ȳ

1
τ2
0

+ n
σ2

τ2
n =

1
1
τ2
0

+ n
σ2

This gives an idea where the term semi-conjugate comes from. If we
consider the posterior distribution of one parameter conditional on the other
parameters, the posterior is of the same form as the prior.
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p(σ2|µ, y):

Similarly

σ2|µ, y ∼ Inv−χ2

(
ν0 + n,

ν0σ
2
0 + nv

ν0 + n

)

where

v =
1
n

n∑

i=1

(yi − µ)2
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p(σ2|y):

Here is where the nice distributional results breakdown.

σ2|y ∝
∫

Inv−χ2(σ2|ν0, σ
2
0)N(µ|µ0, τ

2
0 )

n∏

i=1

N(yi|µ, σ2)dµ

∝ Inv−χ2

(
σ2|ν0 + n,

ν0σ
2
0 + (n− 1)s2

ν0 + n

)∫
N(µ|µ0, τ

2
0 )N

(
ȳ|µ,

σ2

n

)
dµ

Since the part inside the integral is proportional to a normal density, the
density p(σ2|y) can be calculated in closed form.

Unfortunately this isn’t a standard density. However we can get a handle
on it based on the fact

p(σ2|y) =
p(µ, σ2|y)
p(µ|σ2, y)
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This comes directly from

p(µ, σ2|y) = p(µ|σ2, y)p(σ2|y)

So

p(σ2|y) ∝ N(µ|µ0, τ
2
0 )Inv−χ2(σ2|ν0, σ

2
0)

∏n
i=1 N(yi|µ, σ2)

N(µ|µn, τ2
n)

While it appears that this depends on µ, it actually doesn’t so we can pick
any value of µ to make computation as easy as possible. A good choice is
to evaluate this at µ = µn, giving

p(σ2|y) ∝ τnN(µn|µ0, τ
2
0 )Inv−χ2(σ2|ν0, σ

2
0)

n∏

i=1

N(yi|µn, σ2)
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p(µ|y):

This is even uglier. While it appears that a closed form solution to the
integral

p(µ|y) ∝
∫

p(µ, σ2|y)dσ2

is possible (the integrand is proportion to an inverse gamma density), this
is usually handled by simulation. On approach is the two stage simulation
approach mentioned before

1. Simulate σ2
1, . . . , σ

2
m

iid∼ σ2|y

2. Simulate µi ∼ µ|σ2
i , y = N(µi, τ

2
i )

Step 1 could be done by an acceptance-rejection method or by the grid
simulation approach discussed in the text.
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An alternative approach would be to use a Gibbs sampler for both µ and
σ2.

This approach will be taken for the example.

The following prior was chosen, trying to match the conjugate prior used
last class

µ|σ2 ∼ N

(
2.5, 0.15 =

0.75
5

)
σ2 ∼ Inv−χ2(4, 0.75)

In this case µ0 was set to µ0 and τ2
0 was set to

σ2
0

κ0
as used in the conjugate

prior. The prior on σ2 was the same in each case.

The results are based on 500,000 imputations.
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µ|y:

µ

p(
µ|

y)
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Semi−conjugate
Conjugate
Non−informative
Semi−conjugate Prior
Conjugate Prior

Prior E[µ|y] SD(µ|y) 95% Cred. Int.

Non-informative 2.367 0.143 (2.085, 2.649)

Conjugate 2.386 0.132 (2.125, 2.647)

Semi-conjugate 2.383 0.135 (2.119, 2.650)
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σ2|y

σ2

p(
σ2 |y

)
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5 Semi−conjugate

Conjugate
Non−informative
(Semi−)Conjugate Prior

Prior E[σ2|y] SD(σ2|y) 95% Cred. Int.

Non-informative 0.6114 0.1729 (0.3610, 1.0287)

Conjugate 0.6120 0.1580 (0.3768, 0.9887)

Semi-conjugate 0.6270 0.1641 (0.3835 1.0189)

Normal Inference Models - Semiconjugate Prior 9



In this case, the two informative priors give similar answers, though the
semi-conjugate prior seems to give slightly larger answers for σ2. This isn’t
particularly surprising as the form of the N−Inv−χ2 distribution should
lead to small values of µ pulling down σ2. In this case, the data suggests
that µ should be a bit lower than the prior specified.

Though one surprising result is that the posterior correlation between µ
and σ2 seems larger in the semi-conjugate case (r = 0.0253) than in the
conjugate case (r = 0.0014).

However there is a suggestion that there might be a problem with the
simulation calculating these (particularly in the conjugate case) so this
might be taken with a grain of salt).
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Multivariate Normal Models

y is a vector of length d with mean vector µ (also of length d and d × d
variance matrix Σ, (y|µ, Σ ∼ Nd(µ, Σ)). The density of a single observation
is

p(y|µ, Σ) ∝ |Σ|−1/2 exp
(
−1

2
(y − µ)TΣ−1(y − µ)

)

where |Σ| is the determinant of the matrix Σ.

The likelihood of n iid observations is

p(y1, . . . , yn|µ, Σ) ∝ |Σ|−n/2 exp

(
−1

2

n∑

i=1

(yi − µ)TΣ−1(yi − µ)

)

= |Σ|−n/2 exp
(
−1

2
tr(Σ−1S0)

)
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where tr(A) is the trace of the matrix A (the sum of the diagonal entries)
and

S0 =
n∑

i=1

(yi − µ)(yi − µ)T

So the density and likelihood look like what we get in the univariate case,
but with matrix and vectors instead.

Note that most of the inference in this model is a direct analogue to the
univariate case. However we need a multivariate analogue to the χ2 and
Inv−χ2 distributions.
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Wishart and Inverse Wishart Distributions

• Wishart distribution (Wishartν(Λ))

Multivariate analogue of a scaled χ2 distribution

If z1, . . . , zν
iid∼ Nd(0, Λ) then

Σ =
ν∑

i=1

ziz
T
i ∼ Wishartν(Λ)

like z1, . . . , zν
iid∼ N(0, τ2) then

S =
ν∑

i=1

z2
i ∼ τ2χ2

ν
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• Inverse Wishart distribution (Inv−Wishartν(Λ−1))

Multivariate analogue of a scaled Inv−χ2 distribution

If Σ ∼ Wishartν(Λ) then

Σ−1 ∼ Inv−Wishartν(Λ−1)
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Common Multivariate Normal Models

• Unknown mean but known variance

µ|Σ ∼ N(µ0, Λ0)

µ|Σ, y ∼ N(µn, Λn)

where

µn = (Λ−1
0 + nΣ−1)−1(Λ−1

0 µ0 + nΣ−1ȳ)

Λ−1
n = Λ−1

0 + nΣ−1

Like the univariate case, the posterior mean is a weighted average of the
prior mean and the sample average and the posterior precision matrix is
the prior ‘precision matrix + data precision matrix.
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• Unknown mean and variance - conjugate prior

Σ ∼ Inv−Wishartν0(Λ
−1
0 )

µ|Σ ∼ N(µ0, Σ/κ0)

The posterior distribution satisfies

Σ|y ∼ Inv−Wishartνn(Λ
−1
n )

µ|Σ, y ∼ N(µn, Σ/κn)

where
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µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ

κn = κ0 + n

νn = ν0 + n

Λn = Λ0 + S +
κ0n

κ0 + n
(ȳ − µ0)(ȳ − µ0)T

S =
n∑

i=1

(yi − ȳ)(yi − ȳ)T

In addition, it is possible to integrate out the variance matrix showing
that

µ|y ∼ tνn−d+1(µn, Λn/(κn(νn − d + 1)))

(i.e. multivariate t with νn − d + 1 degrees of freedom)
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• Unknown mean and variance - non-informative prior

p(µ, Σ) ∝ |Σ|−(d+1)/2

which is the Jeffreys’ prior and is the limit of the conjugate prior as
κ0 → 0, ν0 → −1, and |Σ0| → 0.

The posterior in this case satisfies

Σ|y ∼ Inv−Wishartn−1(S)

µ|Σ, y ∼ N(ȳ, Σ/n)

Similarly to the univariate case,

µ|y ∼ tn−d(ȳ, S/(n(n− d)))
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Poisson Regression

Example: Geriatric study

A researcher in geriatrics designed a 6 month prospective study on n = 100
subjects to investigate the effects of two interventions on the frequency of
falls. We will examine the effect of the intervention along with one of the
covariates (Strength index) believed to be associated with the number of
falls.

Data model: (yi = number of falls during study, zi = Intervention, xi =
Balance index)

yi|λi
ind∼ Pois(λi)

log λi = a + bxi + czi
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Prior:

Assume a, b, and c are independent with

a ∼ N(0, 100)

b ∼ N(0, 100)

c ∼ N(0, 100)

This is intended to be a fairly non-informative prior and clearly isn’t a
conjugate. The posterior distribution is of the form

p(a, b, c|y) ∝ e−a2/200e−b2/200e−c2/200
n∏

i=1

e(a+bxi+czi)yie−ea+bxi+czi

Given the form of this posterior, it will need to be examined by simulation.
5000 samples will be generated by the Gibbs sampler.
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Questions of interest:

• p(c|y)

• p(b|y)

• p(b, c|y)

• p(a, b|y)

• P [c < 0|y] (c < 0 indicates intervention works)

• p(ec|y) (ec gives the rate of change in the expected number of falls)

λ = eczea+bx

• λ when x = 40 under no intervention and intervention
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Answers:

• p(c|y)

c

D
en

si
ty

−1.6 −1.4 −1.2 −1.0 −0.8
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1.
0

1.
5

2.
0

2.
5

3.
0

E[c|y] = −1.074; SD(c|y) = 0.131
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• p(b|y)

b

D
en

si
ty

−0.005 0.000 0.005 0.010 0.015 0.020 0.025

0
20

40
60

80

E[b|y] = 0.00898; SD(b|y) = 0.00406

Note that this result is a bit surprising, since an increased strength index
is expected to lead to fewer falls.
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• p(b, c|y)
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• p(a, b|y)
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• P [c < 0|y]

P [c < 0|y] ≈ 1
m

m∑

i=1

I(ci < 0) = 1
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• p(ec|y)

exp(c)

D
en

si
ty
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8

E[ec|y] = 0.345; SD(ec|y) = 0.0451

This implies that the effect of the intervention should lead to people
having less than half a many falls. The best guess is about a third as
many.

Poisson Regression 27



• λ when x = 40 under no intervention and intervention

No Intervention

λ

D
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No Intervention
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Intervention E[λ|y] SD(λ|y)
No 3.735 0.421

Yes 1.281 0.184
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