
Large Sample Inference

Statistics 220

Spring 2005

Copyright c©2005 by Mark E. Irwin



Normal Approximation to the Joint Posterior

Let θ̂ be the posterior mode (the maximizer of p(θ|y). Then

log p(θ|y) = log p(θ̂) +
1
2
(θ − θ̂)T

[
d2

dθ2
log p(θ|y)

]

θ=θ̂

(θ − θ̂) + . . .

which looks like

c− 1
2
(θ − θ̂)TΣ−1(θ − θ̂) + . . .

So if the cubic and higher order terms are negligible, this is like the log of a
normal density (which should occur is the posterior distribution is unimodal
and roughly symmetric). Thus

p(θ|y) ≈ N(θ̂, [I(θ̂)]−1)
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where I(θ) is the observed information

I(θ) = − d2

dθ2
log p(θ|y)

So we get a similar result to that for the MLE, that is its approximately
normally distributed.

Example: Binomial success probability

Lets assume the conjugate prior π ∼ Beta(α, β). Then the posterior is

p(π|y) ∝ πα+y−1(1− π)β+n−y−1
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The derivatives are

d log p(θ|y)
dθ

=
α + y − 1

π
− β + n− y − 1

1− π

d2 log p(θ|y)
dθ2

= −α + y − 1
π2

− β + n− y − 1
(1− π)2

which gives

π̂ =
α + y − 1

α + β + n− 2
I(π̂) =

α + β + n− 2
π̂(1− π̂)

so

π|y approx.∼ N

(
π̂,

π̂(1− π̂)
α + β + n− 2

)
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For the Wiarton Willie example (n = 41, y = 37) and a Beta(3, 3) prior

π̂ =
3 + 37− 1
6 + 41− 2

=
39
45

= 0.8667

I(p̂) =
453

39× 6
= 389.42 [I(p̂)]−1/2 = 0.0507
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Now with the 1
2Beta(8, 2) + 1

2Beta(2, 8) Mixture prior

π̂ = 0.8980 I(p̂) = 490.11 [I(p̂)]−1/2 = 0.0452
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The comment about unimodal and symmetric is important. However when
the number of observations gets big, this usually isn’t a problem.
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Prior: Beta(10, 10)
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Let φ = f(θ) where f(·) is a continuous, differentiable transformation.
Then both p(θ|y) and p(φ|y) both approach normal distributions. However
how well they do for finite n can be different.

For example, in the discussion in the text on a normal data with unknown
mean and variance, parameterizing in term of log σ leads to a better normal
approximation.

Also, while the result talks about the parameters jointly, often the normality
is closer when dealing with a subset of the parameters.

One place where this normal approximation is useful is in deriving
approximate credibility intervals. In the univariate case

θ̂ ± zα/2[I(θ̂)]−1/2

is an approximate 100(1− α)% central credibility interval.
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Do we need to worry about the normalizing constant?

In the earlier example, I worked with c×p(θ|y) instead of p(θ|y). Note that
this doesn’t make a difference since

log(c× p(θ|y)) = log c + log p(θ|y)

d log(c× p(θ|y))
dθ

=
d log p(θ|y)

dθ

d2 log(c× p(θ|y))
dθ2

=
d2 log p(θ|y)

dθ2
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Justification of the Asymptotic Normality and
Consistency

The earlier result is imprecise, not indicating how good the normal
approximation might be. Lets make it more precise.

Notation:

• f(y): true distribution of the data. Assume that y1, . . . , yn
iid∼ f(y).

• p(y|θ): model distribution for the data.

• p(θ): prior distribution for the parameters

The first thing to note is that we may not be modelling the data correctly.
In this case, things will converge, but not the way we might want it to be.
However if f(y) = p(y|θ0) for some θ0, then things work the way we would
like.
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Kullback-Leibler information:

H(θ) = E

[
log

(
f(y)

p(y|θ)
)]

=
∫

log
(

f(y)
p(y|θ)

)
f(y)dy

The KL information can be thought of as a measure of distance between the
distributions f(y) and p(y|θ). Lets assume that θ0 is the unique minimizer
of H(θ). If f(y) = p(y|θ0), then H(θ) is minimized at θ.

For all that follows, θ0 is the minimizer of H(θ).
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Theorem. [Convergence in discrete parameter space] If the parameter
space Θ is finite and P [θ = θ0] > 0 then

P [θ = θ0|y] → 1 as n →∞

Proof. Consider the log posterior odds

log
(

p(θ|y)
p(θ0|y)

)
= log

(
p(θ)
p(θ0)

)
+

n∑

i=1

log
(

p(yi|θ)
p(yi|θ0)

)

The last term is the sum of n iid RV where θ and θ0 are fixed and yi is
random with distributions f . Then

E

[
log

(
p(yi|θ)
p(yi|θ0)

)]
= H(θ0)−H(θ) ≤ 0
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Thus if θ 6= θ0, the second term is the sum of n iid RVs with negative mean,
which must diverge to −∞ as n → ∞. As long as p(θ0) > 0 (making the
first term finite), the log posterior odds → −∞ as n →∞. Thus

p(θ|y)
p(θ0|y)

→ 0

which implies p(θ|y) → 0. As all the probability must add to one, this
implies p(θ0|y) → 1

2

Theorem. [Convergence in continuous parameter space] If θ is defined
on a compact set (i.e. closed and bounded) and A is a neighbourhood
of θ0 (i.e. and open set containing θ0) with prior probability satisfying
P [θ ∈ A] > 0, then

P [θ ∈ A|y] → 1 as n →∞
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Proof. See Appendix B. However the idea behind their proof is based on
the idea of the discrete parameter space case. 2

Note that for many problems we have discussed, Θ is not a compact set
(e.g. Normal mean - µ ∈ (−∞,∞)). For most problems, the compact
space assumption can be relaxed. The compact assumption is needed for
the proof so Θ can be covered by a finite number of open sets and so an
analogue to the discrete case can be used.

Also note that the discrete case can often be extended to allow for a infinite
sample space Θ.

Theorem. [Asymptotic Normality of p(θ|y)] Under some regularity
conditions (notably that θ0 is not on the boundary of Θ), as n →∞

√
n(y − θ0)

D−→ N(0, J(θ0)−1)
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where

J(θ) = E

[(
d log p(y|θ)

dθ

)2

|θ
]

= −E

[
d2 log p(y|θ)

dθ2
|θ

]

Proof. Again see Appendix B, but a couple of comments.

I(θ) = − d2

dθ2
log p(θ|y)

= − d2

dθ2
log p(θ)− d2

dθ2
log p(y|θ)

= − d2

dθ2
log p(θ)−

n∑

i=1

d2

dθ2
log p(yi|θ)

E[I(θ)] = − d2

dθ2
log p(θ) + nJ(θ)

so as n gets big I(θ) ≈ nJ(θ) 2
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Bayes vs Likelihood

Let θ̂ be the posterior mode and θ̃ be the MLE. Under regularity conditions

• Consistency:

θ|y P−→ θ0 θ̃
P−→ θ0

• Asymptotic normality:

√
n(θ − θ0)|y D−→ N(0, J(θ0))

√
n(θ̃ − θ0)

D−→ N(0, J(θ0))

and

I(θ0)−1/2(θ − θ0)|y D−→ N(0, I) I(θ̃)−1/2(θ̃ − θ0)
D−→ N(0, I)

So for large sample sizes, Bayes and Likelihood give equivalent answers.
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Counterexamples

The results presented have assumptions behind them, and if the assumptions
aren’t satisfied, the consistency and asymptotic normality can break down.

• Underidentified models and nonindentified parameters

A model is called underidentified, given data y, if the likelihood, p(y|θ)
is equal for a range of values of θ. The other case is exhibited by the
following example:

(
u

v

)
∼ N

((
0
0

)
,

(
1 ρ

ρ 1

))

Assume that for all observations, only u or v is observed (every pair has
missing data). Then
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p(ρ|y) ∝ p(ρ)
m∏

i=1

φ(ui)
n∏

j=1

φ(vj)

which only depends on ρ through the prior. This is an example of a
nonindentified parameter, one which has no information supplied by the
data.

For both of these problems, better data collection or information about
the parameters is needed. For the example, you need to make sure you
have observations where both components are not missing.
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• The number of parameters increasing with sample size

Underlying the proofs of the theorems is that the amount of information
about each of the parameters increases as n increases. If this doesn’t
occur, consistency and asymptotic normality can’t occur. For example,
consider the model

yi|πi ∼ B(ni, πi)

πi ∼ p(πi)

For this model

p(πi|y) ∝ p(πi)π
yi
i (1− πi)ni−yi

regardless of how many observations are taken. Additional observations
give no further information about πi. Only information about addition
parameters πj is collected.
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This posterior will not converge to a point. For that additional Bernouilli
trials under this πi would be needed.

• Aliasing

This is a special case of underidentified parameters. In this case, different
sets of parameter values will give the same likelihood. This is commonly
seen in mixture models. For example the mixture data model

p(yi|µ1, µ2, σ
2
1, σ

2
2, λ) = λ

1
σ1

√
2π

exp
(
− 1

2σ2
1

(yi − µ1)2
)

+(1− λ)
1

σ2

√
2π

exp
(
− 1

2σ2
2

(yi − µ2)2
)

In this case if µ1, σ
2
1 is switched with µ2, σ

2
2 and λ is replaced by 1− λ,

you get the same likelihood for and yi.

The posterior distribution in this case is a 50-50 mixture of two
distributions that are mirror images of each other. This can’t be
normal (since it is bimodal) and can’t converge to a single point.
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The usual solution to this problem is to reparameterize the problem so the
duplication disappears. For example, for this mixture model, restricting
µ1 ≤ µ2 solves the problem.

However this can get difficult in multidimentional problems. How should
you order vectors? You might do something like ||µ1|| ≤ ||µ2||.

• Unbounded likelihooods

If a likelihood function is unbounded, there might not be a posterior
mode in the parameter space, or it might be on the boundary.

For example, for the mixture problem above, setting µ1 = yi for any
observation i and letting σ2

1 → 0 leads to the likelihood blowing up.
So for this example, there are multiple modes. As the number of
observations increases, the number of modes increases and thus can’t
converge to a single point.

This can usually be handled by restricting the prior to avoid these
problems (e.g. force p(σ2

1) = 0 around 0).
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• Improper posterior distributions

Implicit in these asymptotic results is that the posterior distribution is
proper. For example, the consistency proof with a discrete parameter
used the fact that

k∑

i=1

p(θk|y) = 1

The solution to this problem is easy. If there is a problem, use a proper
prior, which must give a proper posterior.

Note, that if there is an improper posterior, the likelihood is probably
badly behaved and a likelihood analysis will also breakdown.

• Prior distribution excluding point of convergence

If p(θ) = 0 in the prior, p(θ|y) = 0 as well. Thus if p(θ0) = 0, the
posterior can’t converge to θ0, but instead will instead converge to a
nearby point where p(θ) > 0 (assuming it converges at all).

To solve this problem, force the prior to satisfy p(θ) > 0 for any remotely
plausible θ.
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• Convergence on the edge of the parameter space

If θ0 is on the boundary of the parameter space problems can occur. One
example comes from linkage analysis, where the recombination fraction θ
is a probability that must lie between 0 and 0.5, with 0.5 corresponding to
two loci occurring on different chromosomes. So with a study involving
traits on two chromosomes,

θ̂|y D−→ 1
2
N(0.5, σ2) +

1
2
I(θ̂ = 0.5)

To avoid this sort of problem, p(θ) > 0 for any remotely plausible θ, or
in the neighbourhood of remotely plausible values can help. Though the
second part of this suggestion I find somewhat problematic. Why should
I put probability on events known to be impossible, assuming that the
model is correct. This is often a big assumption. For example, in the
linkage analysis problem, θ < 0.5 holds under certain assumptions about
meiosis (dealing with interference in the crossover process). If these
assumptions are wrong, θ > 0.5 is possible.
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• Tails of the distribution

The asymptotic normality is essentially a result about the form of the
distribution in the center of its distribution. It is based a Taylor series
expansion around the posterior mode (which is usually close to the
posterior mean or median). It is not a result about what occurs in the
tails. The normal distribution has the property that

p(θ) ∝ e−cθ2

however some distributions have much heavier tails (e.g. Cauchy (p(θ) ∝
1
θ2), Laplace (p(θ) ∝ e−c|theta|)), so using a normal distribution can do
a bad job in the tails.

Another problem, which may be problem with finite sample sizes, is
that the normal distribution takes values over an infinite range. In
many problems, (e.g. binomial success probabilities), the range of the
parameter is finite. However as n increases, this problem will usually
disappear, as θ0 will get further from the boundary of the parameter
space on a standard deviation scale.
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