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EM Algorithm 

(Dempster, Laird, and Rubin, 1977) 

An approach for finding MLEs and posterior 
modes. 

Based on decomposing data into observed and 
missing parts. 

The missing data might be real, a theoretical 
construct, or both. 

Let Y be the observed data and X be the 
unobserved, complete data. 

In general there is a function ( )t X Y=  that 
collapses the complete data X onto Y. 

Often ( ),X Y Z= , where Z is the missing data 

Assume that X has density ( )f X θ , and Y has 
density ( )g Y θ .  When choosing X you need to 
set it up such that 

( ) ( )
( )t X Y

g Y f X dXθ θ
=

= ∫  
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Problem: Find 

( )ˆ arg supg yθ θ= . 

Assume that this is tough to do. 

Idea: Pick X such that ( )f X θ  is easy to 
maximize. 

Can’t deal with ( )f X θ  exactly, since X can’t be 
known with certainty. 

Instead we want to deal with an expectation 
involving it. 

The EM algorithm gives a sequence of 
estimates 0 1 2, , ,θ θ θ … by iterating the following 2 
steps. 

E-step: Calculate 

( ) ( )log ,n nQ E f X Yθ θ θ θ⎡ ⎤= ⎣ ⎦ , 

the conditional expectation of the complete 
data log likelihood. 

M-step: Set 

( )1 arg supn nQθ θ θ+ =  
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This scheme has the property that the 
sequence of estimators increases the observed 
data likelihood ( )g Y θ .  (To be made more 
precise later) 

Example: Linkage Analysis (Rao, 1973, pp 368-
369, Feb 4th lecture)) 
 

Phenotype Probability Counts Y 

ab λ/4 34 1y  

Ab (1 – λ)/4 18 2y  

aB (1 – λ)/4 20 3y  

AB (2 + λ)/4 125 4y  

( )1 2 3 4
1 1 2, , , ~ Multi 197, , , ,

4 4 4 4
Y Y Y Y λ λ λ λ⎛ ⎞− − +⎛ ⎞

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

The likelihood and log likelihood functions are 

( )
1 2 3 41 2

4 4 4

Y Y Y Y

g Y λ λ λλ
+− +⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

( ) ( ) ( )
( )

1 2 3

4

log log log 1

log 2 197 log 4

g Y Y Y Y

Y

λ λ λ

λ

= + + −

+ + −
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As we’ve seen, this needs some work to 
maximize. 

Let ( )1 2 3 4 5, , , ,X X X X X X=  such that 

( )1 2 3 4 5, , , ,

1 1 1~ Multi 197, , , , ,
4 4 4 4 2

X X X X X

λ λ λ λ⎛ ⎞− −⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

and 1 1 2 2 3 3, ,X Y X Y X Y= = = . 

So 4Y  is being split into 2 groups. 

Notice that for this problem 4X  and 5X  don’t 
have any particular meaning.  It’s a theoretical 
construct set up to make things easy to deal 
with. 

Its also a situation where X isn’t of the form 
( ),Y Z , though it could be extended to that 
setup. 

With X, it is easy to solve for λ.  With this data 

1 4

1 2 3 4

ˆ X X
X X X X

λ
+

=
+ + +
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as 

( ) ( ) ( ) ( )1 4 2 3

5

log log log 1

log 2 197 log 4

f X X X X X

X

λ λ λ= + + + −

− −
 

Another way of getting this is based on 

( )1 4 1 2 3 4 ~ Bin ,X X X X X X n n λ+ + + + =  

E-step: 

( )
( ) ( ) ( )1 4 2 3log log 1 ,

n

n

Q

E X X X X Y

λ λ

λ λ λ⎡ ⎤= + + + −⎣ ⎦
 

Since most of the components of X are fixed 
given Y, this reduces to 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 2 3

4

1 2 3

4 4

1 4 2 3

log log 1

log ,

log log 1

log ,

ˆ log log 1

n

n

n

Q Y Y Y

E X Y

Y Y Y

E X Y

Y X Y Y

λ λ λ λ

λ λ

λ λ

λ λ

λ λ

= + + −

⎡ ⎤+ ⎣ ⎦
= + + −

⎡ ⎤+ ⎣ ⎦

= + + + −

 

where 4 4 4
ˆ , nX E X Y λ⎡ ⎤= ⎣ ⎦. 

Now 4 4 4| ~ Bin ,
2

X Y Y λ
λ

⎛ ⎞
⎜ ⎟+⎝ ⎠

 so 
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4 4 4

4

ˆ ,

2

n

n

n

X E X Y

Y

λ

λ
λ

⎡ ⎤= ⎣ ⎦

=
+

 

M-step: 

1 4
1

1 2 3 4

ˆˆ
ˆn

Y X
Y Y Y X

λ +

+
=

+ + +
 

 

Iteration nλ  ( )log ng λ  

0 0.5 64.6297445 

1 0.608247423 67.3201705 

2 0.624321050 67.3829250 

3 0.626488879 67.3840812 

4 0.626777322 67.3841017 

5 0.626815632 67.3841021 

6 0.626820719 67.3841021 

7 0.626821394 67.3841021 

Notice that the observed data log likelihood 
increases at each step. 

The above run was based on the convergence 
criteria of 6

1 10n nλ λ −
+ − <  
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Example: Multivariate Normal with missing 
data 

Complete Data: 

( )~ , ; 1, ,i kX N V i nµ = …  

( )1, ,T
i i ikX X X= …  

( ) ( ) ( )

( ) ( )

( )

1

1

1

1 1log log det
2 2
1 log det
2

1 trace
2

1 log det
2

1 trace 2
2

T
i i i

T
i i

T T T
i i

f X V X V X

V

V X X

V

V X X X

θ µ µ

µ µ

µ µµ

−

−

−

= − − − −

= −

⎡ ⎤− − −⎣ ⎦

= −

⎡ ⎤− − +⎣ ⎦

 

So a set of sufficient statistics for µ and V are 

1

n

i
i

X
=
∑  and 

1

n
T

i i
i

X X
=
∑ . 

For the complete data set up 

1

1ˆ
n

i
i

X
n

µ
=

= ∑  



8 

and 

( ) ( )
1

1

1ˆ ˆ ˆ

1 ˆ ˆ

n
T

i i
i
n

T T
i i

i

V X X
n

X X
n

µ µ

µµ

=

=

= − −

= −

∑

∑
 

Missing Data: 

Assume that components of iX  are missing at 
random.  So the missing data pattern for each 
vector could be arbitrary. 

For example, 1Y  = 1X , 2Y  = ( )21 23 25 2, , , T
kX X X X…  

(with 2Z  = ( )22 24, TX X ) and so on. 

While each iY  is multivariate normal, the 
parameterization is potentially different for 
each observation, so you can’t directly get the 
MLE. 

However it can be done quite easily with EM 
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E-step: 

As the complete data log likelihood is a linear 
function of the sufficient statistics, the E-step 
involves calculating 

1
, ,

n

i n n
i

E X Y Vµ
=

⎡ ⎤
⎢ ⎥⎣ ⎦
∑  and 

1
, ,

n
T

i i n n
i

E X X Y Vµ
=

⎡ ⎤
⎢ ⎥⎣ ⎦
∑  

If the observations are independent, the 
problem reduces to calculating 

( )ˆ , ,n
i i i n nX E X Y Vµ⎡ ⎤= ⎣ ⎦ 

and 
( )ˆ , ,n T
i i i i n nS E X X Y Vµ⎡ ⎤= ⎣ ⎦  

for each observation.  (How to do it to come) 

M-step: 

( )
1

1

1 ˆˆ
n

n
n i

i
X

n
µ +

=

= ∑  

and 

( )
1 1

1

1 ˆˆ ˆ ˆ
n

Tn
i n n

i
V S

n
µ µ+ +

=

= −∑  
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How to get ( )n
iX  and ( )ˆ n

iS  

iT
i i

i

Z
X P

Y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

where T
iP  is a square matrix which permutes 

the rows into the correct order. ( 1T
i iP P −= ). 

For multivariate normals 

( )1
| ,i i z ZY Y i Y Z Y i

i i i

E Z Y V V Y

E Y Y Y

µ µ µ−⎡ ⎤ = + − =⎣ ⎦
⎡ ⎤ =⎣ ⎦

 

So 

( ) ,Z Y in T
i i

i

X P
Y

µ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

To get ( )ˆ n
iS , we’ll use the fact that 

( )VarT T
X XE XX X µ µ⎡ ⎤ = +⎣ ⎦  

First 

( )
( )

( )

1
,Var

Var 0

Cov , 0

i i Z ZY Y YZ Z Y i

i i

i i i

Z Y V V V V V

Y Y

Z Y Y

−= − =

=

=
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Then 

( ) ,
,

0
Var

0 0
Z Y iT

i i i i X Y i

V
X Y P P V

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
 

So 

( ) ( ) ( )
| ,

Tn n n
i X Y i i iS V X X= +  

As can be seen from this example, EM doesn’t 
just fill in missing parts of X with their 
expectation, i.e, 

( ) ( )log ,n nQ f E X Yθ θ θ θ⎡ ⎤≠ ⎣ ⎦  

Instead, when calculating ( )nQ θ θ  you need to 
calculate expectations of functions of the 
sufficient statistics. 

When the distribution of X comes from the 
exponential family, the problem reduces 
calculating the conditional expectation of the 
sufficient statistics since 

( ) ( ) ( ) ( )

( ) ( ) ( )

,

,

T
n n

T
n

Q E h X Y

E h X Y

θ θ β θ γ θ θ

β θ θ γ θ

⎡ ⎤= +⎣ ⎦
⎡ ⎤= + ⎣ ⎦
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up to an additive constant (which doesn’t affect 
the optimization. 

This exactly what was done in the multivariate 
normal example ( ( )T T

i i ih X X X X⎡ ⎤= ⎣ ⎦∑ ∑ ) 

So in addition, when choosing X, the complete 
data, you also need to think of situations where 
you can calculate the conditional expectations 
in addition to whether the likelihood is easy to 
optimize. 

 

Optimality properties of EM 

Theorem 

( ) ( )1n ng Y g Yθ θ+ ≥  

or equivalently 

( ) ( )1log logn ng Y g Yθ θ+ ≥  

Proof: 

For simplicity, lets assume that X can be 
decomposed into ( ),Y Z , the observed and 
missing parts.  The proofs go through without 
this assumption, but they aren’t quite as 
intuitive (technical note, in Sec 10.3.1). 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

,

log log log ,

log log log ,

f X g Y h Z Y

f X g Y h Z Y

g Y f X h Z Y

θ θ θ

θ θ θ

θ θ θ

=

= +

= −

 

by taking expectations of both sides of the third 
line with respect to Y and nθ , we get 

( ) ( ) ( )log n ng Y Q Hθ θ θ θ θ= −  

where 

( ) ( ) ( )
( )

log , ,

log , ,

n n

n

H h Z Y h Z Y dZ

E h Z Y Y

θ θ θ θ

θ θ

=

⎡ ⎤= ⎣ ⎦

∫
 

Then  

( ) ( )
( ) ( )

( ) ( )

1

1

1

log log

0

0
0

n n

n n n n

n n n n

g Y g Y

Q Q

H H

θ θ

θ θ θ θ

θ θ θ θ

+

+

+

−

⎡ ⎤= −⎣ ⎦
≥
⎡ ⎤− −⎣ ⎦

≤
≥

 

Thus ( ) ( )1log logn ng Y g Yθ θ+ ≥  
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Jensen’s inequality: 

Let W be a random variable.  If ( )h w  is a 
convex function on the range of W, then 

( ) [ ]( )E h W h E W⎡ ⎤ ≥⎣ ⎦  

assuming both expectations exist.  For a 
strictly convex function, equality holds iff 

[ ]W E W=  almost surely. 

Lemma (Prop 10.3.2): 

 ( ) ( )'H Hθ θ θ θ≤  

Proof 

( ) ( )
( ) ( )

( )
( )
( ) ( )

( )
( ) ( )

( )

'

log , log , '

,

, '
log ,

,

, '
log ,

,

log , ' 0

H H

h Z Y h Z Y

h Z Y dZ

h Z Y
h Z Y dZ

h Z Y

h Z Y
h Z Y dZ

h Z Y

h Z Y dZ

θ θ θ θ

θ θ

θ

θ
θ

θ

θ
θ

θ

θ

−

⎡ ⎤= −⎣ ⎦
×

⎡ ⎤
= − ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

≥ − ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤= − =⎣ ⎦

∫

∫

∫

∫  
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Generalized EM (GEM): 

In the M-step, you don’t actually have to 
maximize the Q function at each step. 

What is needed is to choose a value 1nθ +  such that 

( ) ( )1n n n nQ Qθ θ θ θ+ ≥ . 

Since this relationship was all that was used in 
the earlier proof, any GEM will increase the 
likelihood. 

So the assumption that X has to be easy to 
maximize can be relaxed and leads to extensions 
to EM, some of which are discussed in Chapter 12 
of Lange. 

Corollary to increasing likelihood theorem 

If the sequence ( ){ }ng Y θ  is bounded above then 

it will converge to some value *g . 

So this implies that EM (or a GEM) converges to 
something. 

It doesn’t imply that nθ  to an optima of ( )ng Y θ . 

You need a bit more to do that. 
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Note that the proof of this in Dempster, Laird and 
Rubin was in error.  Wu (1983) finds conditions 
which do imply what nθ  converges to. 

Theorem:  Under some regularity conditions (see 
Wu, 1983), for any EM sequence { }nθ , 

( ) ( )1log logn ng Y g Yθ θ+ >  

if 

( ){ }: log 0n D g Yθ θ θ∉Γ = =  

Proof: 

( ) ( )10logD g Y D Qθ θ θ=  

where D10 indicates taking partial derivatives with 
respect to the first θ. 

This comes from 

( ) ( ) ( )log g Y Q Hθ θ θ θ θ= −  

and ( )10D H θ θ  = 0 since ( ) ( )'H Hθ θ θ θ≥  

So if ( ) ( )1n n n nQ Qθ θ θ θ+ > , then 

( ) ( )1log logn ng Y g Yθ θ+ >  

which holds for points in cΓ . 
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This theorem then implies that any limit point of 
an EM sequence must be a stationary point of 

( )log ng Y θ . 

Thus a sequence { }nθ  must converge to a local 
maximum or saddle point of ( )log ng Y θ . 
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EM Algorithm Extensions 

ECM (Meng and Rubin, 1993) 

(Expectation Conditional Maximization) 

Idea: Suppose that ( )1 2, , , kθ θ θ θ= …  and that 

optimizing ( )( )nQ θ θ  isn’t easy.  However 

suppose that 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 2 3

1 2 3

1 2 3

, , , ,

, , , ,

, , , ,

n n n n
k

n n n n
k

n n n n
k

Q

Q

Q

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

…

…

…

 

are all easy to maximize. 

Note in the above jθ  may be a vector of 
parameters. 

Then the basic ECM algorithm modifies the M-
step as follows 
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M1: Given ( )
2 2

nθ θ= , ( )
3 3

nθ θ= , … , ( )n
k kθ θ=  find the 

value of 1θ , ( )1
1

nθ + , that maximizes 
( ) ( ) ( ) ( )( )1 2 3, , , ,n n n n

kQ θ θ θ θ θ…  

M2: Given ( )1
1 1

nθ θ += , ( )
3 3

nθ θ= , … , ( )n
k kθ θ=  find 

the value of 2θ , ( )1
2
nθ + , that maximizes 

( ) ( ) ( ) ( )( )1
1 2 3, , , ,n n n n

kQ θ θ θ θ θ+ …  

… 

Mk: Given ( )1
1 1

nθ θ += , ( )1
2 2

nθ θ += , … , ( )1
1 1

n
k kθ θ +
− −=  

find the value of kθ , ( )1n
kθ

+ , that maximizes 
( ) ( ) ( ) ( )( )1 1 1
1 2 1, , , ,n n n n

k kQ θ θ θ θ θ+ + +
−…  

So step through and maximize each piece 
separately. 
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This procedure is a GEM since  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )( )

1 1 1 1
1 2 1

1 1
1 2 1

1
1 2

, , , ,

, , , ,

... , , ,

n n n n n n n
k k

n n n n n
k k

n n n n
k

n n

Q Q

Q

Q

Q

θ θ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ

θ θ

+ + + +
−

+ +
−

+

≥

≥

≥ ≥

≥

…

…

…
 

So all the nice properties I talked about last 
time go through, (though you need to be 
slightly careful with the regularity conditions 
showing that ECM converges to a stationary 
point of the likelihood surface – see Meng and 
Rubin 1993) 

Example: Multivariate normal regression with 
incomplete response data 

Complete Data Model: 

( )~ , ; 1, ,i iY N X V i mβ = …  

where iX  is a k × p matrix of covariates, β is a p 
× 1 vector of unknown parameters, and V is a 
positive definite covariance matrix ( ( )1 /2k k +  
unknown parameters) 
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Missing Data: 

Components of iY  are missing at random 
(similar to example from last time) 

Let iS  be a matrix on ones and zeros which 
indicates which observations have been 
observed (e.g. i iS Y  is the vector of observed 
components) 

E-step: 
( )ˆ , ,n

i i i i n nY E Y S Y Vβ⎡ ⎤= ⎣ ⎦  

and 
( )ˆ , ,n T

i i i i i n nW E YY S Y Vβ⎡ ⎤= ⎣ ⎦  

 

M-step: maximize 

( ) ( ) ( )( )
( )( ) ( )( )

1

1

1 ˆ ˆ ˆlog trace
2 2

1 ˆ ˆ
2

Tn n n
i i i

i

Tn n
i i i i

i

m V V W Y Y

Y X V Y Xβ β

−

−

⎡ ⎤
− − −⎢ ⎥⎣ ⎦

− − −

∑

∑
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M1: 

( ) ( ) ( ) ( )1 11 ˆ
T

n n n nT T
i i i i

i i
X V X X V Yβ

− −+ ⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑  

M2: 

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )

1 1 1

1 1

1 ˆ ˆ ˆ(

)

T Tn n n n n n
i i i i i

i
Tn n T

i i

V W Y X X Y
m

X X

β β

β β

+ + +

+ +

= − −

+

∑
 

 

Analogies with other procedures: 

Iterative Proportional Fitting (IPF): 

Approach for fitting log linear models for 
contingency tables when there are no 
closed form solutions.  Actually this is a 
special case of ECM (Lange, section 12.2). 

Gibbs sampler: 

Draw jθ  from j jθ −
⎡ ⎤Θ⎣ ⎦  where { }:j i i jθ−Θ = ≠  
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Iterative Conditional Modes (ICM)  (Besag, 
1986): 

Iteratively maximize components of the 
posterior distribution (or the likelihood 
function) 

 

Variations: 

Additional E-steps can be mixed into the series 
of M-steps.  For example, if k = 2, a modified 
ECM scheme could be  

(E – M1 – E – M2) – (E – M1 – E – M2) 

instead of  

(E – M1 – M2) – (E – M1 – M2) 

Another modification is to skip E-steps, giving 
for example, 

(E – M1 – M2 – M1 – M2) – (E – M1 – M2 – M1 – M2) 

Note that this sort of scheme usually isn’t 
particularly advantageous, though if 
calculating the E-step is slow, this can lead to 
speed ups. 
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EM Gradient Algorithm 

Even with careful thinking, the M-step may not 
be feasible, even with extensions like ECM. 

As all that is really needed is a GEM, what we 
really need is an approximation to the 
maximizer. 

One approach for doing this is one Newton-
Raphson step on Q.  This given 

Gradient M-step: Set 

( ) ( )
( ) ( )

120 10
1

120

T
n n n n n n

T
n n n n

d Q d Q

d Q dL

θ θ θ θ θ θ

θ θ θ θ

−

+

−

= −

= −
 

The second form holds since as shown last time 

( ) ( )10logD g Y D Qθ θ θ=  

Since NR isn’t a ascent algorithm, you need to 
watch things a bit, but it is possible to show 
than when you get close to θ̂ , the EM gradient 
algorithm satisfies the ascent condition 
( ) ( )1n nL Lθ θ+ ≥ . 
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This idea can also be combined with ECM, e.g., 
run EM Gradient on a couple of the ( )n

jθ ’s and 
regular ECM on the rest. 

Another advantage to this combination, is that 
NR often works better on smaller parameter 
spaces (more likely to have an ascent 
algorithm) 

Note that this idea can be used with regular 
NR.  There is nothing special about doing it on 
the Q function. 

 

Bayesian EM 

Let ( )π θ  be the prior distribution on the 
parameter θ .  Then the posterior density  

( ) ( ) ( )Y g Yπ θ θ π θ∝  

So finding the posterior mode is equivalent to 
maximizing 

( ) ( )log logg Y θ π θ+  

Assuming that a nice complete data model 
( )f X θ  can be found, the Bayesian version of 

EM involves 
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Bayesian E-step: 

( ) ( ) ( )

( ) ( )

log log ,

log , log

n n

n

Q E f X Y

E f X Y

θ θ θ π θ θ

θ θ π θ

⎡ ⎤= +⎣ ⎦
⎡ ⎤= +⎣ ⎦

 

Bayesian M-step: Set 

( )1 arg supn nQθ θ θ+ =  

By similar arguments as for basic EM, the 
sequence { }nθ  leads to an increasing sequence 
of the log posteriors, converges to a stationary 
point of the log posterior, etc. 

One potential problem is that the log prior 
often complicates the M-step. 

Usually things only work nicely when the prior 
is conjugate to the complete data model. 

A prior is conjugate if the posterior distribution 
is a member of the same family of distributions 
as the prior 
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Example: 

Complete data: ( )~ Bin ,X n p  

( ) ( )1 n xxn
f x p p p

x
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

Prior: ( )~ Beta ,p α β  

( ) ( ) 11 1p p p βαπ −−∝ −  

Posterior: 

( ) ( ) 11 1 n xxp x p p βαπ − + −+ −∝ −  

( )~ Beta ,p x x n xα β+ − +  

E-step: 

( ) ( )
( ) ( )

1 log

1 log 1 ,
n

n

Q p p E x a p

n x p Y pβ

⎡= + −⎣
⎤+ − + − − ⎦
 

So we need , nE X Y p⎡ ⎤⎣ ⎦ , where Y is the 
observed data. 
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M-step: 

1

, 1
2

n
n

E X Y p
p

N
α

α β+

⎡ ⎤ + −⎣ ⎦=
+ + −

 

 

Missing Information Principle 

Remember from last time 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

,

log log log ,

log log log ,

f X g Y h Z Y

f X g Y h Z Y

g Y f X h Z Y

θ θ θ

θ θ θ

θ θ θ

=

= +

= −

 

This implies 

( ) ( ) ( )( )2 2 2log log log ,D g Y D f X D h Z Yθ θ θ− = − − −

Taking conditional expectations gives 

( ) ( ) ( )O OC OMI Y I Y I Yθ θ θ= −  

Observed Information  

 = Complete Information – Missing  
         Information 
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( ) ( )20
OCI Y D Qθ θ θ= −  

( ) ( )20
OMI Y D Hθ θ θ= −  

 

Convergence of EM 

EM can be considered as an iterative update 
scheme where 

( )1n nMθ θ+ =  

It has been shown (Dempster, Laird, and 
Rubin, 1977) that EM has linear convergence 
and that 

1 2

2

ˆ
lim

ˆ
n

n
n

θ θ
λ

θ θ
+

→∞

−
=

−
 

where λ is the largest eigenvalue of ( )ˆDM θ . 

Note that the mapping ( )1n nMθ θ+ =  may be 
difficult to determine in a nice form so the 
Jacobian can be calculated.  However, ( )ˆDM θ  
can be tied in with the missing information 
principle as follows. 
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Theorem: 

If ( )10
1 0n nD Q θ θ+ = , then  

( ) ( ) ( )1ˆ ˆ ˆ
OM OCDM I Y I Yθ θ θ−=  

Proof: 

( )( )10 0D Q M θ θ =  

Applying the chain rule 

( ) ( )( ) ( )( )20 11 0DM D Q M D Q Mθ θ θ θ θ+ =  

which implies 

 ( ) ( ) ( )20 11ˆ ˆ ˆ ˆ ˆ 0DM D Q D Qθ θ θ θ θ+ =  (*) 

Then 

( ) ( ) ( )log ' 'g Y Q Hθ θ θ θ θ= −  

implies 

( ) ( ) ( )11 11 20D Q D H D Hθ θ θ θ θ θ= = −  

So plugging this into (*) gives 

( ) ( ) ( )20 20ˆ ˆ ˆ ˆ ˆ 0DM D Q D Hθ θ θ θ θ− =  
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which then gives the result. 

 

One way of thinking of this, particularly for the 
scalar parameter case, is the rate of 
convergence is the fraction of information that 
is missing. 

This implies for fast convergence, you want 
( )OMI Yθ  to be “small” and ( )OCI Yθ  to be “big” 

So for the genetics example, 

( )
( )

4 4 120 2 3
2 2

, '
'

' 1 '

E X y y y y
D Q

λ
λ λ

λ λ

⎡ ⎤ + +⎣ ⎦= − −
−

 

( )
( )

4 420 4
2 2

, '
'

' 2 '

E X y yD H
λ

λ λ
λ λ

⎡ ⎤⎣ ⎦= − +
+

 

Plugging in λ̂  = 0.626821 gives 

( ) ( ) ( )1ˆ ˆ ˆ 0.132778OM OCDM I Y I Yλ λ λ−= =  
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If we look at the sequence of iterations 
 

Iteration nλ  ˆ
nλ λ−  1

ˆ ˆ/n nλ λ λ λ+ − −  

0 0.5 0.126821 0.1465 

1 0.608247423 0.018574 0.1346 

2 0.624321050 0.002500 0.1330 

3 0.626488879 0.000333 0.1327 

4 0.626777322 0.000044 0.1322 

5 0.626815632 0.000006 0.1287 

6 0.626820719  - 

7 0.626821394  - 

This doesn’t quite match the table in DLR. 

In the scalar parameter case 

( ) ( )

( ) ( )

ˆVar
ˆVar

1
1ˆ ˆVar Var

1

X
Y

X X

θ
θ

λ

θ θ
λ

=
−

= +
−
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Calculating the information matrix 

1) Calculate  directly 

( ) ( )2 logOI D g Yθ θ= −  

Usually not feasible if you’re forced to run EM 
instead of, say, Newton-Raphson. 

2) Use the fact 

( ) ( )10logD g Y D Qθ θ θ=  

and differentiate this. 

3) Use the fact 

( ) ( )
( ) ( )

2

20 20
0 0

logOI D g Y

D Q D H

θ θ

θ θ θ θ

= −

= − +
 

Usually not useful for calculation purposes.  
When this can be used for getting ( )OI θ , you 
can probably do 1) directly.  This fact is more 
useful for doing proofs about EM. 
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4) Louis’ formula (Louis, 1982) 

( ) ( )
( )

( ) ( )( )
( ) ( )

2

2

log

log

log log

log log

O

T

T

I D g Y

E D f X Y

E D f X D f X Y

E D f X Y E D f X Y

θ θ

θ

θ θ

θ θ

= −

⎡ ⎤= −⎣ ⎦
⎡ ⎤− ⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤+ ⎣ ⎦ ⎣ ⎦
 

This can be though of in terms of the missing 
information principle.  The first term in the 
sum is the complete information and the last 
two terms are the missing information. 

The second term in the sum might be a bit 
difficult as it will involve products of the 
sufficient statistics. 

Note that the third term is 0 when evaluated at 
the MLE. 

There is a simplification which sometimes 
helps as the last two terms are just 
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( )

( ) ( )( )
( ) ( )

Var log

log log

log log

T

T

D f X Y

E D f X D f X Y

E D f X Y E D f X Y

θ

θ θ

θ θ

⎡ ⎤⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤− ⎣ ⎦ ⎣ ⎦

 

so Louis’ formula is sometimes presented as 

( ) ( )
( ) ( )( )

2

2

log

log , Var log ,

OI D g Y

E D f X Y D f X Y

θ θ

θ θ θ θ

= −

⎡ ⎤= − −⎣ ⎦

 

Example: Genetics 

 

( ) ( ) ( ) ( )1 4 2 3

5

log log log 1

log 2 197 log 4

f X X X X X

Y

λ λ λ= + + + −

+ −
 

 

( )

( )
( )

2 31 4

2 2 31 4
2 2

log
1

log
1

X XX XD f X

X XX XD f X

λ
λ λ

λ
λ λ

++
= −

−
++

= − −
−
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So 

( )
( )

( )

4 4 12 2 3
2 2

4 12 2 3
2 2

,
log ,

1

1

E X y y y y
E D f X Y

y y y yλ
λ

λ
λ λ

λ λ

λ λ
+

⎡ ⎤ + +⎣ ⎦⎡ ⎤ = − −⎣ ⎦ −

+ +
= −

−
 

( )( ) 2 31 4

4

4
2

Var log , Var ,
1

Var ,

2
2 2

X XX XD f X Y Y

X Y

y

λ λ λ
λ λ

λ
λ
λ
λ λλ

++⎛ ⎞= −⎜ ⎟−⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠

=
+ +

Plugging in gives  

( )
( )( )

2 log , 435.3

Var log , 57.8

E D f X Y

D f X Y

λ λ

λ λ

⎡ ⎤ =⎣ ⎦

=
 

so 

( )ˆI λ  = 435.3 – 57.8 = 377.5 
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5) SEM algorithm (Meng and Rubin, 1991) 

Their idea is based on the missing information 
principle and the fact 

( ) ( ) ( )1ˆ ˆ ˆ
OM OCDM I Y I Yθ θ θ−=  

Combining the two gives 

( )
( )

1

O OC OM

OM OC OC

OC

I I I

I I I I

I DM I

−

= −

= −

= −

 

Thus, if we can figure out DM and OCI , we can 
get the observed information in the data. 

In the genetics example discussed last time, we 
saw that using iterates from EM we could get a 
reasonable guess for DM, at least in a single 
parameter problem. 

Instead of calculating the matrices above 
exactly, the idea is to use the iterates of the EM 
sequences to approximately numerically, DM. 
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( ) ( )

( ) ( )

( ) ( )

ˆ

1

ˆ

1

ˆ

ˆ ˆ ˆ, , , ,
lim ˆ

ˆ ˆ ˆ, , , ,
lim ˆ

lim

i i

i i

j
ij

i

j i k j

i i

t
j i k j

tt
i i

t
ijt

M
r

M M

M M

r

θ θ

θ θ

θ
θ

θ

θ θ θ θ

θ θ

θ θ θ θ

θ θ

=

→

→∞

→∞

∂
=

∂

−
=

−

−
=

−

=

… …

… …
 

So the following scheme can be used to get t
ijr . 

1) Fix i = 1 and set ( ) ( )1̂
ˆ, , , ,t t

i kiθ θ θ θ= … …  

 Evaluate ( ) ( )( )1t ti M iθ θ+ =  

2) Form 

( )1 ˆ
ˆ

t
j jt

ij t
i i

i
r

θ θ
θ θ

+ −
=

−
 

 for j = 1, … , k. 

3) Repeat steps 1 and 2 for i = 2, … , k. 

To implement this algorithm, k evaluations of 
the mapping M are required. 
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Doing this for each EM iteration leads to the 
sequence { 1

ijr , 2
ijr , …},. which can be stopped at t* 

when the sequence stablizes.  Note that t* may 
not be the same for each (i, j ) combination. 

Also for numerical reasons the sequence may 
appear to become unstablized at some point.  
We saw this last time with the genetics example 
 

Iteration nλ  ˆ
nλ λ−  ( ) ( )1 /ˆ ˆ

n nλ λ λ λ+ − −  

0 0.5 0.126821 0.1465 

1 0.608247423 0.018574 0.1346 

2 0.624321050 0.002500 0.1330 

3 0.626488879 0.000333 0.1327 

4 0.626777322 0.000044 0.1322 

5 0.626815632 0.000006 0.1287 

6 0.626820719  0.1009 

7 0.626821394  -0.1831 

This is an artifact of the numerical precision of 
computer code.  When calculating the errors at 
each iteration you lose significant digits. 

However if you had infinite precision, the 
sequence would converge. 
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So for deciding when the t
ijr  have converged, 

you need a different convergence criterion. 

One suggestion I’ve seen (though I can’t 
remember where) is if your convergence 
criterion for EM is stop when 

1n n TOLθ θ+ − <  

then use the SEM stopping criterion 
1t t

ij ijr r TOL+ − <  

One way to think of this is to go for only half as 
many digits of accuracy. 

Also look to see when the sequence 1t t
ij ijr r+ −  

starts to increase (as it probably will). 

One potential problem with this algorithm, is 
that this estimate OI  is not guaranteed to be 
symmetric and thus 1

OV I −=  will not be either. 

Meng and Rubin suggest replacing V with 
( )1

2
TV V+ . 

Another idea would be to replace OI  with 

( )1
2

T
O OI I+ . 
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Asymmetry in OI  and V can be used to look for 
problems in SEM. 

 

Note that you do not need to iterate the SEM 
algorithm as I’ve described,  You can run 
through steps 1) through 3) only once.  
However you need to think about the values t

iθ  
you use for each i. 

 

SEM when θ is a single value 

You do not need to run the extra EM steps to 
get ( )1t iθ +  as ( )1t iθ +  = 1tθ + . 

So for this case, you get SEM for free.  However 
for the multiparameter case, you do need to 
run the extra EM steps. 
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Genetics Example: 

As shown last time the true value of DM = 
0.1327798.  Plugging into 

( )
( )1 0.1327798 435.3
377.501

O OCI I DM I= −

= −

=

 

The same answer as Louis’ method. 

If we estimate DM with 0.132739278 (where 
1t t

ij ijr r+ −  starts to increase, we get 

( )
( )1 0.1327392 435.3
377.519

O OCI I DM I= −

= −

=

 



43 

If we look at the standard error of λ̂ , we get 

( )ˆ 0.0514684SE λ =  
 

Iteration ( )ˆSEMSE λ  

0 0.0518792 
1 0.0515231 
2 0.0514753 
3 0.0514672 
4 0.0514524 
5 0.0513471 
6 0.0505479 

 

Cyclic Coordinate Ascent: 

Last time I briefly discussed optimizing along 
each coordinate in turn (ICM, ECM).  In general 
the algorithm can be thought of as 

Step 1): Find 1t  which maximizes 

( )1L teθ +  

where ie  is the vector whose ith coordinate is 1 
and the rest are 0. 
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Step i):  Find it  which maximizes 

( )1

1

i
j j ij

L t e teθ −

=
+ +∑  

When all k coordinates have been updated, one 
iteration is complete. 

It can be shown that cyclic coordinate schemes 
will converge as long as a maximum is 
determined in each step. 

However that convergence might be to saddle 
point, instead of a local maximum. 

None of the schemes I’ve discussed so far are 
guaranteed to converge to the global maximum, 
unless strong assumptions can be made of the 
function being optimized, such as the function 
is convex over its parameter space 

Problem 13.7 in Lange discusses a multivariate 
normal case where the Likelihood has two 
modes and a saddle point. 

 


