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Importance Sampling 

Used for a number of purposes: 

• Variance reduction 

• Allows for difficult distributions to be 
sampled from. 

• Sensitivity analysis 

• Reusing samples to reduce computational 
burden. 

 

Idea is to sample from a different distribution 
that picks points in “important” regions of the 
sample space. 

Want  

( ) ( ) ( )E f X f x g x dx⎡ ⎤ =⎣ ⎦ ∫  

Instead of sampling from density (or probability 
mass function) ( )g x , sample from a 
distribution with density (or pmf) ( )h x . 

Since we are sampling from the “wrong” 
distribution we have to make adjustments in 
our estimator. 
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( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

g

h

E f X f x g x dx

g x
f x h x dx

h x

g X
E f X

h X

⎡ ⎤ =⎣ ⎦

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

∫

∫  

This suggests the following estimation scheme 

1) Sample 1, , nx x…  from ( )h x . 

2) Calculate weights 

( )
( )

i
i

i

g x
w

h x
=  

3) Use estimator 

( ),
1

1ˆ
n

f IS i i
i

w f x
n

µ
=

= ∑  

So instead of a regular average, this estimator 
is a weighted average. 

So points that occur more often under ( )h x  
than ( )g x  get downweighted and those that 
occur less often get upweighted. 
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Notice that ,ˆ f ISµ  is an unbiased estimate of 
( )gE f X⎡ ⎤⎣ ⎦  regardless of which proposal 

distribution ( )h x  as long as ( )h x  has the same 
support as ( )g x , i.e. 

( ) 0g x >  implies that ( ) 0h x >  

Note that ( ) 0h x >  can be allowed to occur 
when ( ) 0g x = , though doing this tends to be 
inefficient (but there are times you want to do 
this). 
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Since ,ˆ f ISµ  is unbiased, the main idea is to pick 
a distribution ( )h x  that reduces the variance. 

( ) ( )
( )

( ) ( )
( )

2

2Varh h f

f X g X f X g X
E

h X h X
µ

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

To do this, we want ( )h x  to look like 
( ) ( )f x g x , i.e. make  

( ) ( )
( )

f x g x
h x

 

look like a constant. 

The optimal ( )h x  satisfies 

( )
( ) ( )
( ) ( )

f x g x
h x

f x g x dx
=
∫

 

Note that this usually can’t be determined, due 
to the normalizing constant. 

However this does give us a motivation for 
picking ( )h x . 
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Example: Monte Carlo Evaluation of a 
Likelihood Ratio (Genetics Example) 

Assume that you have a missing data model 
where ( ),obs misX X X= .  Then the observed data 
likelihood ratio satistifies 

( ) ( )
( )

( )
( )

( )
( )

1

0

1

0

0

1
1 0

0

,

,
,

obs

obs

obs mis
obs

obs mis

p XL
l

L p X

p X X
E X

p X X

θ

θ

θ
θ

θ

θ
θ θ

θ
= =

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

 

This can be estimated by sampling 1, , nz z…  
from ( )mis obsp X X  calculating 

1) ( ) ( )
( )

1

0

,
,

obs i
i

obs i

p X z
f z

p X z
θ

θ

=  

2) ( ) ( )1 0
1

1ˆ ,
n

i
i

l f z
n

θ θ
=

= ∑  

Suppose that you are interested in getting 
( )2 0,l θ θ , based on this Monte Carlo estimate. 
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This can be done with the importance sampling 
estimate 

( ) ( )
( )
( )

2

1

2 0
1

,1ˆ ,
,

n
obs i

i
i obs i

p X z
l f z

n p X z
θ

θ

θ θ
=

= ∑  

This can be shown to be an unbiased estimator 
of ( )2 0,l θ θ . 

 

Genetics example: 

Observed Data Model 

( )1 2 3 4
1 1 2, , , ~ Multi 197, , , ,

4 4 4 4
Y Y Y Y λ λ λ λ⎛ ⎞− − +⎛ ⎞

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

( )
1 2 3 41 2

4 4 4

Y Y Y Y

g Y λ λ λλ
+− +⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 

Complete Data Model 

( )1 2 3 4 5, , , ,

1 1 1~ Multi 197, , , , ,
4 4 4 4 2

X X X X X

λ λ λ λ⎛ ⎞− −⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
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( )
1 4 2 3 51 1

4 4 2

X X X X X

g X λ λλ
+ +−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 

As seen before 4 4 4~ Bin ,
2

X Y Y λ
λ

⎛ ⎞
⎜ ⎟+⎝ ⎠

 

The complete data likelihood ratio satisfies 

( )
( )

1 4 2 3
1 1 1

0 00

, 1
1,

Y X Y Yg Y X
g Y X

λ λ λ
λ λλ

+ +
⎛ ⎞ ⎛ ⎞−

= ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
 

Note that this implies the importance sample 
weight satisfies 

( ) 2
1 2 3 2 1

1

, , , ,
iz

iw c Y Y Y
θ

θ θ
θ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

In this case ( )2 0
ˆ ,l λ λ  has the form 

( ) ( ) ( )1 2 3 2 1 2
2 0

1 1

, , , ,ˆ ,
izn

i
i

c Y Y Y
l f z

n
λ λ λ

λ λ
λ=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  
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As in many problems, the desired sampling 
distribution doesn’t need to be known exactly, 
but only up to the normalizing constant (i.e. 
( ) ( )l x cg x= ). 

Importance sampling still works fine in this 
case. 

1) Sample 1, , nx x…  from ( )h x . 

2) Calculate weights 

( )
( )

i
i

i

l x
w

h x
=  

3) Use estimator 

( )

( )

,
1

1

1ˆ

1

n

f IS i i
i

n

i i
i

w f x
W

w f x
nw

µ
=

=

=

=

∑

∑
 

 where iW w= ∑ . 
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Properties of this estimator 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )

h

g

l x
E w X f X f x h x dx

h x

f x cg x dx

cE f X

⎡ ⎤ =⎣ ⎦

=

⎡ ⎤= ⎣ ⎦

∫

∫  

[ ] ( )
( ) ( )

( )

h

l x
E w h x dx

h x

cg x dx c

=

= =

∫

∫
 

As this is a ratio estimator, it is no longer 
unbiased, but it is consistent. 

In addition, when c is known, this estimator is 
often preferred to the unbiased one discussed 
last time as it often has a smaller mean square 
error (to be discussed later). 

 

Efficiency of importance sampling 

Effective sample size 

( )
( )( )

ESS
1 varh

nn
w X

=
+
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Since the weights are usually only known up to 
the normalizing constant, ( )( )varh w X  needs to 
be estimated by the coefficient of variation of 
the unnormalized weights 

( )
( )

( )

2

2 1
2cv

1

n
ii

w w
w

n w
=

−
=

−
∑  

Assume for what follows that c = 1 (and this is 
known). 

We have two estimators 

( )

( )

1

1

1     (unbiased)

1ˆ     (ratio)

n

i i
i

n

i i
i

w f x
n

w f x
nw w

µ

µµ

=

=

=

= ≡

∑

∑

�

�
 

 

Let ( ) ( )Z w X f X= .  Then by the delta method 

[ ] ( ) ( )( )
( ) ( )

2ˆ 1 1 1

cov , Var

h h

h h

E E Z w w

w Z W
n n

µ

µ
µ

⎡ ⎤≈ − − + −
⎣ ⎦

≈ − +
 



11 

In addition, 

( )

( ) ( ) ( )( )2

Var ˆ
1 Var Var 2 Cov ,

h

h h hw Z w Z
n

µ

µ µ≈ + −
 

For the unbiased estimator, 

[ ]hE µ µ=�  and ( ) ( )Var Varh h Z nµ =�  

Thus 

( ) ( )Var
MSE h Z

n
µ =�  

and 

( ) [ ]( ) ( )
( )

( ) ( )( ) ( )

2

2 2

MSE ˆ ˆ Var ˆ

MSE

1 Var 2 Cov ,

h h

h

h h

E

n

w w Z O n
n

µ µ µ µ

µ

µ µ −

= − +

=

+ − +

�
 

Thus the ratio estimate is to be preferred when 

( ) ( )22 Cov , Varh hw Z wµ µ>  
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(assuming µ > 0).  That is when ( )w X  and 
( ) ( )w X f X  are highly correlated. 

 

In addition, the formula for ( )Var ˆh µ  implies 
(whole bunch of steps omitted) 

( ) ( )( ) ( )( )( )Var Var 1 Varh g hf X w X nµ ≈ +�  

 

Rearranging this gives 

( )( )
( ) ( )( ) ( )( )

Var 1
Var 1 Var

g

h h

f X
w X f X w X

≈
+

 

 

One way of thinking of this statement is that n 
samples from the proposal distribution ( )h x  is 

worth ( )( )( )1 Varhn w X+  samples drawn from 

the target distribution ( )g x . 

The nice thing with this rule of thumb is that it 
doesn’t depend on the function being 
integrated.   
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Thus the effective sample size is a useful 
measure of the efficiency of the method when 
different functions f are investigated with a 
single sample. 

 

One consequence of this is that we want to 
keep the coefficient of variation of the weights 
well behaved. 

One way of doing this is to have the proposal 
distribution ( )h x  be heavier tailed than the 
target distribution ( )g x .  This will help 
minimize 

( )
( )

( )
( ) ( )

( )
( )

2 2

h

g

g X g x
E h x dx

h X h x

g X
E

h X

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

∫
 

which will keep ( ) ( )( )Varh g X h X  small. 

For example, use a t distribution with moderate 
degrees of freedom instead of a normal. 
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Marginalization in importance sampling 

Let ( )1 2,g X X  and ( )1 2,h X X  be two probability 
densities where the support of g is a subset of 
the support of h (e.g. ( )1 2, 0g X X >  implies 
( )1 2, 0h X X > ). 

Then 

( )
( )

( )
( )

1 2 1

1 2 1

,
Var Var

,h h

g X X g X
h X X h X
⎛ ⎞ ⎛ ⎞

≥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

where ( )1g X  and ( )1h X  are the respective 
marginal distributions. 

 

( )
( )

( )
( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )

1 2
1

1 2

1 2
2 1 2

1 2

1 2
2 1 2

1 2 1

1 1
2 1 2

1 1

,
,

,
,

,

h

g X X
E X

h X X

g X X
h X X dX

h X X

g X X
h X X dX

h X h X X

g X g X
g X X dX

h X h X

⎡ ⎤
⎢ ⎥
⎣ ⎦

=

=

= =

∫

∫

∫
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Thus 

( )
( )

( )
( )

( )
( )

1 2 1 2
1

1 2 1 2

1

1

, ,
Var Var

, ,

Var

h h

h

g X X g X X
E X

h X X h X X

g X
h X

⎛ ⎞⎛ ⎞ ⎡ ⎤
≥ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎣ ⎦⎝ ⎠

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

 

 

In addition 

( )
( )

( )
( )
( )
( )

1 2 1

1 2 1

1 2
1

1 2

,
Var Var

,

,
Var

,

h h

h

g X X g X
h X X h X

g X X
E X

h X X

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎡ ⎤⎛ ⎞

= ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 

The implication of this result is that where 
possible, minimize the number of variables you 
sample as this will increase ( )ESS n . 

However the computational burden must also 
be considered. 
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For example, if 

( )
( )

( )
( )

1 2 1

1 2 1

,
Var 2Var

,h h

g X X g X
h X X h X
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

but the computational time involved in 
sampling ( )1h X  is 4 times the time involved 
sampling ( )1 2,h X X , sampling over the second 
space is to be preferred. 

 

Similarly, Rao-Blackwellization can be with 
importance sampling, giving an estimate of the 
form 

( )1 2 1,
1

1 ,
n

i g i
i

w E f X X x
W

µ
=

⎡ ⎤= ⎣ ⎦∑�  

While this is a consistent estimate, it may not 
have a smaller variance than the non-Rao-
Blackwellized estimate.  However in many 
situations it should. 

The following is an example where it did help. 
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Estimating recombination fractions with 
pedigree data 

 
• 41 members 

• n = 27 (nonfounders), f = 14 (founders) 

• 8 markers from chromosome 19 

• #alleles ranges from 6 to 8 

• 14 members in top 2 generation have no 
marker data 

• Want to use pedigree to estimate the 
distances between the 8 markers 
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No Recombination Recombination 

A 

D 

A

D

 
 

 
Can use the recombination fraction 
(P[recombination]) as a measure of distance. 

A D A D

No Recombination Recombination
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Data Structure 

• lx  = data on locus l 

o ( )1,...,M m=x x x   m markers 

o Dx  = disease / trait data 

o ( )1,..., ,m D=x x x x  

• ly  = haplotype for locus l 

o ( )1,..., ,m D=y y y y  

o Allele information with parental source 

• lz  = inheritance vector for locus l 

o ( )1,..., ,m D=z z z z  

o Indicators of whether allele inherited 
came from the grandmother or 
grandfather 

Assume that lz  is a vector of length 2n.  Then 
an estimate of jθ , the recombination fraction 
between markers j and j + 1 is 

( )
2

, 1,
1

1
2

n

j j i j i
i

I z z
n

θ +
=

= ≠∑  

assuming that z is known. 
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Unfortunately, for most data sets, z can’t be 
determined with certainty.  However it is 
possible to do simulation and estimate the 
recombination fractions using Monte Carlo EM 
(MCEM) 

As part of this procedure is it necessary to 
calculate ,lE ⎡ ⎤⎣ ⎦z x θ  via Monte Carlo.  There are 
two approaches to doing this. 

1) Sample ( )iy from ( )pθ y x  by importance 
sampling 

 Sample ( )iz  from ( )( ), ipθ z x y  

 Estimate ,lE ⎡ ⎤⎣ ⎦z x θ  by  

( )

1

1 m
i

i l
i

w
W =
∑ z  

2) Sample ( )iy from ( )pθ y x  by importance 
sampling 

 Estimate ,lE ⎡ ⎤⎣ ⎦z x θ  by 

( )

1

1 ,
m

i
i l

i
w E

W =

⎡ ⎤
⎣ ⎦∑ z y θ  
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Both approaches estimate exactly the same 
quantity, but the 2nd approach is much more 
efficient. 

First the second approach has a smaller 
variance. 

In addition, calculating the expected value is 
actually faster than sampling the z’s. (usually 
doesn’t work out this way). 


