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Monte Carlo Methods 

Interested in  

( ) ( ) ( )E f X f x d xµ⎡ ⎤ =⎣ ⎦ ∫  

Examples: 

• Type I error rate of a hypothesis test 

• Mean width of a confidence interval 
procedure 

• Evaluating a likelihood 

• Finding posterior mean and variance 

Often calculating these will be difficult. 

Approximate with 

( )
1

1 n

i
i

f x
n =
∑  

where 1, , nx x…  is sampled from ( )Xµ . 

Under certain regularity conditions, 

( ) ( )
1

1 n

i
i

f x E f X
n =

⎡ ⎤→ ⎣ ⎦∑  
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Issues: 

• probability measure being integrated over 

• function being integrated 

• sampling scheme 

• form of convergence 

 

Focus: Sampling Schemes 

• Independently and identically distributed 
(IID) 

• Importance sampling 

• Sequential importance samplers (SIS) 

• Markov Chain Monte Carlo (MCMC) 

 • Gibbs sampling 

 • Metropolis – Hastings (M-H) 

 • Reversible jump 

 • Bridge sampling 

 • etc 

• and so on 
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Choice is often driven by ( )Xµ , e.g., 

IID infeasible leads to use of SIS or MCMC 

SIS may work but Gibbs sampler has 
reducible chain 

M-W works when SIS has poorly behaved 
importance sampling weights. 

etc 

There is no one Monte Carlo approach that will 
solve every problem. 

Want to develop a set of tools that can be used, 
possibly in combination, for a wide range of 
problems. 

Need to recognize when each of them should 
work and when modifications are needed. 
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Basic Simulation Methodology 

Pseudo-random numbers: 

“Random” numbers generated on computers 
are not random but generated by deterministic 
algorithms. 

Basic problem: generate ui, 0 < ui < 1, that 
appear to be an iid sample from the ( )0,1U  
distribution. 

Once you have these, you can simulate from 
“any” distribution. 

 

Uniform deviates 

Instead of generating ( )0,1U , most generators 
actually generate integers ( ( )0, 1U m −  or 
( )1, 1U m − ) and then convert these to the 

interval ( )0,1 . 

Numerically more stable and faster. 
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Multiplicative Congruential Generators: 

Generate integer sequence { }ik  by 

1 modi ik ak m+ =  

for suitably chosen positive integers a and m, 
where b mod m is the remainder from dividing 
b by m. 

If 1 1modma m− =  and 1modla m≠  for 0 < l < m – 
1 and if 0k  is a positive integer that isn’t a 
multiple of m, then it can be shown that 

1 1, , mk k −…  will be a permutation of {1, 2, … , m – 
1} (a is said to be a primitive root of unity mod 
m). 

The period of this generator is m – 1. 

In general the period is the number of values 
until the generator starts to repeat. 

 

Linear Congruential Generators 

( )1 modi ik ak b m+ = +  

for suitable integers a, b, and m. 
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Good generators should have 

• long periods 

• low (near 0) correlations 

• give samples that look uniform 

This holds for any generator, not just 
congruential generators. 

 

Choices for m, a, and b 

1) m = 312 1− : largest prime integer that can 
be stored on most computers 

• 57a =  (IMSL, early versions of Matlab) 

• a = 950,706,376 (IMSL option, shown to 
be good by Fishman & Moore) 

2) m = 322 : number of integers that can be 
represented on most computers. 

• Can’t get full period if b = 0 since m is 
even. 

• Maximum period of 302  can be achieved 
if 5 8a l= +  for some l.  Common choice 
is a = 69069 
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• Can get full period of 302  when b ≠ 0, 
such as with a = 69069 and b = 
23606797. 

 

Problems with congruential generators: 

• Must have some autocorrelation 

• n dimensional uniformity (how close do n 
tuples of consecutive draws achieve 
uniformity in the n-dimensional unit cube). 

• congruential generators tend to give n-
vectors that concentrate near hyperplanes 
in n-dimensional space for some n. 

 

Example: RANDU generator 

• IBM SYSTEM/360 generator 

( )16 31
1 2 3 mod2i ik k+ = +  

• Has the property that 
31

1 29 6 0mod2i i ik k x+ +− + =  



8 

 Proof: 

( )22

32 31

9 6 3

2 2 2
i i i i

i i

x ax a x a x

x x

− + = −

= = ×
 

• Realizations of triples must fall on one of 15 
planes, 312  apart 

 

from <http://www.unf.edu/ccec/cis/CIShtml/RANDUinfo.html> 
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• This generator is still around is system 
software. 

From HP documentation 
<http://h18009.www1.hp.com/fortran/docs/lrm/lrm0315.htm> 

GSL (Gnu Scientific Library) 
<http://www.gnu.org/software/gsl/manual/gsl-
ref_17.html#SEC271> 

In GSL, its there for backward compatibility 
with old code that people use and historical 
completeness. 

  

• With congruential generators, the leading 
bits tend to be more random than the low 
order bits, so one shouldn’t treat subsets of 
the bits in the representation as separate 
random numbers 

• Standard congruential generators have 
periods that are too short for some 
statistical applications. 
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Shuffling algorithm 

• Initialize: ( ) ; 1, ,is i u i N= = …  and set 
( )y s N= . 

• Generate a new value u and set 
( )int 1j yN= + , where ( )int x  is the largest 

integer ≤ x. 

• Set ( )y s j= , ( )s j u= , and return y as the 
uniform deviate. 

The idea behind this scheme is that a 
permutation of uniforms is still uniform. 

By combining generators with long, but not 
equal periods, a new generator with a much 
longer period can be created. 

Example: ran2 (Numerical recipies due to 
L’Ecuyer) 

Generator 1 ( iv ): a = 40014, m = 2147483563.  
Uses shuffle algorithm with N = 32. 

Generator 2 ( iw ): a = 40692, m = 2147483399. 

Returns 

( ) ( ) ( ) ( )1i i i i i i i i iu v w I v w v w I v w= − ≥ + − + <  
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The period of this generator is the product of 
the periods of the two streams, divided by any 
common factors. 

The period is about 18 612.3 10 2× ≈ . 

 

Recursive generators 

1 1 1 modi i l i lk a k a k m+ + −= + +…  

Linear combination of the previous l values. 

Maximum period: 1lm −  

 

Fibonacci generators 

17 5

97 33

i i i

i i i

u u u
u u u

− −

− −

= −
= −

 

If lagged difference < 0, add 1 to result. 
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Shift / Tausworthe generators 

Based on binary expansion of integers 
32

1

1

2l
l

l
j b −

=

= ∑  

The idea is to shift the sequence and then 
combine it with the original sequence by 
exclusive or. 

As part of the S-Plus generator, they use the 
following shift generator 

double ush(j) 
  unsigned long *j; 
{ 
  double v = 4294967296;  /* v = 
2^32 */ 
  *j = *j ^ (*j >> 15); 
  *j = *j ^ (*j << 17); 
  return(*j/v); 
} 

*j >> 15 shifts the bits right by 15 and 
replaces bits 1 to 15 with 0. ^ is exclusive 
or so   *j = *j ^ (*j >> 15)  replaces 
the vector j with 

( )32 18 17 32 1 16, , , , , mod2b b b b b b+ +… …  
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The S-Plus generator combines this with a 
congruential generator with a = 69069, m = 322  
with an exclusive or operation. 

R has 6 different uniform generators.  The 
default is the Mersenne Twister, a generalized 
feedback shift register (GFSR) generator with a 
period of 19937 60002 1 10− ≈ .  To see the others 
available in R, see help(RNGkind). 

 

Bottom line: Creating a good generator is an art 
and a science. 

The constants used in congruential generators 
and the lags used in Fibonacci and Tausworthe 
generators are not arbitrary.  Poor choices can 
lead to very nonrandom behaviour (such as 
with RANDU). 

 

Diehard tests 

A set of procedures for testing random number 
generators created by George Marsaglia. 
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Generating from non-uniform distributions 

For a cumulative distribution function (CDF) 
[ ] ( )P X x F x≤ = , the inverse CDF is defined by 

( ) ( ){ }1 inf :F u x F x u− = ≤  

For continuous RVs, 

( ) ( )
( )( )

1

1

P F X u P X F u

F F u u

−

−

⎡ ⎤⎡ ⎤≤ = ≤⎣ ⎦ ⎣ ⎦

= =
 

so ( ) ( )~ 0,1F X U .  Conversely, if ( )~ 0,1U U  

( ) ( )1P F u x F x−⎡ ⎤≤ =⎣ ⎦  

Thus, given an iid ( )0,1U  sample { }1, , nu u… , an 
iid sample { }1, , nx x…  from F can be obtained by 

( )1
i ix F u−= . 

Example: Cauchy 

( )

( ) ( )( )1

1 1; , arctan
2

; , tan 1 2

xF x

F u u

µµ σ
π σ

µ σ µ σ π−

−⎛ ⎞= + ⎜ ⎟
⎝ ⎠

= + −
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Example: Exponential 

( ) ( )
( ) ( )1

; 1 exp

; log 1

F x x

F u u

µ µ

µ µ−

= − −

= − −
 

Sometimes its easier to work with the survivor 
function ( ) ( )1S x F x= − .  Since U and 1 – U 
both have uniform distributions, ( )1S u−  will 
also be a draw from F. 

So  

( ) ( )1 ; logS u uµ µ− = −  

will also give a draw from an exponential 
distribution. 

Not all distributions (e.g. normal or gamma) 
have nice closed form expressions for 1F − . 

The density is usually of a nice form, but often 
the CDF, and thus its inverse aren’t.  However 
there are often good analytical approximations 
to 1F − , so these can be used instead. 

For example with the standard normal, a 
rational function approximation could be used 
(R and Matlab definitely do, S-Plus probably). 
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Note that the Inverse CDF method isn’t 
commonly used for most distributions as it 
tends to be slow. 

Functions like log, sin, cos, etc tend to be 
somewhat expensive to calculate. 

Though surprisingly in R, it is the default for 
normals.  However there are 4 other methods 
available (see help(RNGkind)).  In S-Plus and 
Matlab, I don’t know what they are doing. 

 

Discrete Distributions: 

Suppose that the distribution has support 
points 1 2, , , ks s s…  (k possibly infinite) and set 

[ ]
1

j

j i j
i

p P X s P X s
=

⎡ ⎤= = = ≤⎣ ⎦∑  

Then independent observations ix  can be 
generated by setting i jx s=  if 1j i jp u p− < ≤  
(where 0 0p = ). 

Essentially this is inverting the CDF. 
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If k is small, then only a few comparisons need 
to be made.  However if k is big, many 
comparisons may be needed (if iu  is close to 1). 

In this case, other methods are needed. 

 

Relationships with other distributions: 

Examples: 

• ( )2~ ,X N µ σ  then XY e=  is lognormal 

• ( )~ 0,1X N  then 2Y X=  is 2
1χ  

• ( )~ 1,X Gammaα α , ( )~ 1,X Gammaβ β , then 

( )~ ,
XY Beta

X X
α

α β

α β=
+

 

 

Polar Coordinates and the Normal Distribution 

Suppose that X, Y are independent ( )0,1N  
variables and consider the polar coordinates 
transformation given by 

cos , sin ; 0,0 2X R Y R Rθ θ θ π= = ≥ ≤ <  
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It is easily shown that ( )~ 0,2Uθ π , 2 2
2~R χ , 

and they are independent.  Also 

[ ] ( )2 2 2exp 2P R r R r r⎡ ⎤> = > = −⎣ ⎦  

Box-Muller Method 

• Generate ( )1 2, ~ 0,1u u U  

• Set 12 logR u= −  and 22 uθ π=  

• Set 1 cosx R θ=  and 2 sinx R θ=  

 

Marsaglia Polar Method 

The sin and cos functions (which are slow) can 
be avoided. 

Underlying the Box-Muller method is to pick 
uniform angle independently of a radius.  This 
can be recast in terms of picking points in the 
unit circle 
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Let ( )1 2, ~ 1,1v v U −  such that 2 2

1 2 1v v+ ≤  

Let θ be the counterclockwise angle from the 
positive 1v  axis to the point ( )1 2,v v .  By 
symmetry, ( )~ 0,2Uθ π  and  

1

2 2
1 2

cos u
u u

θ =
+

 and 2

2 2
1 2

sin
u

u u
θ =

+
 

Also 2 2
1 2P v v u u uπ π⎡ ⎤+ ≤ = =⎣ ⎦ , so 

( )2 2
1 2 ~ 0,1v v U+  
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Finally θ and 2 2
1 2v v+  are independent (again by 

symmetry). 

Thus, given ( )1 2,v v , two normal deviates are 
given by 

2 2
1 2u v v= + , 2 log /w u u= − , 

1 1x v w= , 2 2x v w=  

 

This is an example of the Acceptance-Rejection 
Method. 

For this example, the fraction of pairs ( )1 2,v v  
that are accepted = 4π  = 0.785, the ratio of the 
area of the circle to the square. 

 

An old generator ( )0,1N  

Let ( )1 12, , ~ 0,1u u U…  and 6
i

z u= −∑  

[ ] ( )1 1;Var
2 12i iE u u= =  

( )6;Var 1i iE u u⎡ ⎤ = =⎣ ⎦∑ ∑  



21 

So z has mean 0 and standard deviation 1 and 
is approximately normal (very approximately) 
by the “Central Limit Theorem” 

-4 -2 0 2 4

-4
-2

0
2

4

rnorm (R)

su
m

(ru
ni

f(1
2)

-6
)

 
This generator has tails which are too light. 

An example of a consequence of this would be 
to incorrectly estimate the coverage rate of a 
confidence interval procedure. 
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Generating Random Deviates 

Often there are no direct ways of sampling from 
a desired distribution (e.g. inverse cdf or 
relationship with other distributions). 

So we need other approaches to generation for 
other distributions. 

 

Acceptance-Rejection (von Neumann, 1951) 

Want to simulate from a distribution with 
density ( )f x . 

Need to find a “dominating” or majorizing 
distribution ( )g x  where g is easy to sample 
from and 

( ) ( ) ( )f x cg x h x≤ =  

for all x and some constant c > 1. 



23 

Sampling scheme 

1) Sample x from ( )g x  and compute the ratio 

( ) ( )
( )

( )
( )

1
f x f x

r x
cg x h x

= = ≤  

2) Sample ( )~ 0,1u U  

 If u ≤ ( )r x accept and return x 

 If u > ( )r x  reject and go back to 1) 

Note that step 2) is equivalent to flipping a 
biased coin with success probability r. 

The resultant sample is a draw from ( )f x . 

Proof: 

Let I be the indicator of whether a sample x is 
accepted.  Then 

[ ] ( )
( )
( ) ( )

1 1

1

P I P I X x g x dx

f x
g x dx

cg x c

⎡ ⎤= = = =⎣ ⎦

= =

∫

∫
 

Next, 
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( ) ( )
( ) ( ) [ ]

( ) ( )

1 1
f x

p x I g x P I
cg x

cf x
f x

c

= = =

= =

 

See Flury (1990) for a more geometrical proof. 

Its based on the idea of drawing uniform points 
( ),x y  under the curve ( )h x  and only accepting 
the points that also lie under the curve ( )f x . 
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x

Half normal
c * Exponential(1)
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The number of draws needed until an 
acceptance occurs is ( )Geometric 1 c  and thus 
the expected number of draws until a sample is 
accepted is c. 

The acceptance probability satisfies 

( )
( )

( )
( )

Area under 1
Area under 

f x dx f x
c h xcg x dx
= =∫
∫

 

One consequence of this is that c should be 
made as small as possible to minimize the 
number rejections. 

The optimal c is given by 

( )
( )

sup
f x

c
g x

=  

Note that the best c need not be determined, 
just one that satisfies  

( ) ( ) ( )f x cg x h x≤ =  

for all x. 
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Example: Generating from the half normal 
distribution. 

( ) ( ) ( )

( )
2

2 0

2 exp 0
2

f x x I x

x I x

φ

π

= ≥

⎛ ⎞
= − ≥⎜ ⎟

⎝ ⎠

 

Lets use an Exp(1) as the dominating density 

( ) ( )0xg x e I x−= ≥  

0 1 2 3 4
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Generating Half Normal

x

Half normal
c * Exponential(1)

The optimal c is 

( )2 exp 1 2 1.315489c
π

= ≈  
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Thus the acceptance –rejection scheme is 

1) Draw ( )~ Exp 1x  

( ) ( )( )2exp 0.5 1r x x= − −  

2) Draw ( )~ 0,1u U  

 If u ≤ ( )r x accept and return x 

 If u > ( )r x  reject and go back to 1) 

Note that this scheme isn’t needed for this 
example as the half normal distribution is the 
distribution of the absolute value of ( )0,1N  
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In the above is was assumed that ( )f x  was a 
density function.  In fact ( )f x  only needs to be 
known up to a multiplicative constant 

( ) ( )l x bf x=  

where b may be unknown. 

One place where this is useful is with posterior 
distributions as 

( ) ( ) ( )p x y x f y xπ∝  

The normalizing constant may be difficult to 
determine exactly. 

However it is not necessary to do so.  Modify 
the procedure as follows. 

Find c such that  

( ) ( ) ( )l x cg x h x≤ =  

for all x and some constant c > 1. 

Sampling scheme 

1) Sample x from ( )g x  and compute the ratio 

( ) ( )
( )

( )
( )

1
l x l x

r x
cg x h x

= = ≤  
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2) Sample ( )~ 0,1u U  

 If u ≤ ( )r x accept and return x 

 If u > ( )r x  reject and go back to 1) 

Do everything the same except use ( )l x  instead 
of ( )f x  

The acceptance probability for this scheme is 

b c . 

 

In addition to the constant c chosen, the 
distribution ( )g x  will also affect the acceptance 
rate.  (c is chosen conditional on ( )g x ) 

A good choice ( )g x  will normally be “close to” 
( )f x .  You want to minimize the separation 

between the two densities. 

Often will look for much member of a 
parametric family will minimize c. 
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For example, for the Half normal problem, 
which ( )Exp µ , will minimize ( )c µ . 

0 1 2 3 4
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x

Half Normal
mu = 1
mu = 2

 
In fact 1µ =  will minimize ( )c µ  for this 
problem. 

 

Note that so far I’m been appeared to have been 
focusing on continuous random variables. 

In fact acceptance-rejection works fine with 
discrete random variables and with variables 
over more than one dimension. 
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The proof goes through in this more general 
place by replacing integration over a density to 
integration over a more general measure. 

For discrete random variables, you get a sum 
over the probability mass function. 

With higher dimensional problems, the 
majorization constants tend to be higher, 
implying the procedure is less efficient. 

 

Log-concave densities 

There is a class of densities where it is easy to 
set up an acceptance-rejection scheme. 

It the case when the log of the density is 
concave on the support of the distributions 

If ( )f x  is log concave, any tangent line to 
( )log f x  will lie above ( )log f x  (call it 

( )l x a bx= + ). 

Thus ( ) ( )l x a bxh x e e e= =  lies above ( )f x . 

( )h x  looks like a scaled exponential density. 
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This suggests that exponential distributions 
can be used as the majorizing distributions. 

A strictly log concave density is unimodal. 

The mode may occur at either endpoint or in 
the middle. 

If the mode occurs at an endpoint, a single 
exponential can be used (as with the half 
normal example) 

If the mode occurs in the middle of the range, 
two exponential envelopes are needed (one for 
left of the mode, the other for the right of the 
mode) 

Example: ( )Gamma 2, 1k λ= =  

The mode for a Gamma is ( )1k λ−  (so 1 for this 
example) 

Left side: ( ) ( )( ) ( )1 exp 1 1l l
l

g x x I xµ
µ

= − <  

Right side: ( ) ( )( ) ( )1 exp 1 1r r
r

g x x I xµ
µ

= − − ≥  
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Gamma(k=2,lambda=1)

x  
The choice of lµ  and rµ  depend on where you 
want the majorized densities ( )lg x  and ( )rg x  
to be tangent to ( )f x  

In the above the tangent points are 0.5lx =  and 
2rx = . 

The total area under ( ) ( ) ( )l l r rh x c g x c g x= +  is 

l rc c c= +  

For the example, 0.5lc =  and 0.8925206rc = , 
so the rejection rate for this sampler is just 
under 30%. 
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To determine which exponentials to use, 
involves solving the systems (for given lx  and 

rx ) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )' ' ' '

l l l l r r r r

l l l l r r r r

f x c g x f x c g x
f x c g x f x c g x

= =
= =

 

Solving gives 

( )
( )
( )
( )

( )

( )
( )
( )
( )

( )
2 2

' '

' '
l l r r

l r
l r

l r

x m x ml r
l r

l r

f x f x
f x f x

f x f x
c e c e

f x f x
λ λ

λ λ

− − −

= = −

= = −

 

where 1i iλ µ=  

The optimal choices for lx  and rx  can be found 
by minimizing lc  and rc  separately. 
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Discrete log concave distributions 

Random variable defined on non-negative 
integers 

Log concave defined as 

( ) ( ) ( )1log log 1 log 1
2

f x f x f x⎡ ⎤≥ − + +⎣ ⎦ 

which is equivalent to 

( ) ( ) ( )2 1 1f x f x f x≥ − +  

for all integers x. 

A possible majorizing distribution in the 
discrete case is the geometric distribution 

[ ] ( )1 ; 0,1,2,xP X x p p x= = − = … 

See Lange for choices of , , ,l r l rp p x x  
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Ratio Method 

This is another method that is useful when the 
distribution you are interested in ( )f x , is only 
known up to an unknown constant, 
( ) ( )h x cf x=  

Define 

( ) ( ){ }, : 0hS u v u h v u= < ≤  

If this set is bounded, we can draw uniform 
points from this set to generate X. 

Proposition 20.5.1 

Suppose  

( )supu xk h x=  

and 

( )supv xk x h x=  

are both finite.  Then the rectangle 
[ ] [ ]0, ,u v vk k k× −  encloses hS . 

If ( ) 0h x =  for x < 0, then the rectangle 
[ ] [ ]0, 0,u vk k×  encloses hS . 
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If the point ( ),U V  sampled uniformly from the 
enclosing set falls with in hS , then the ratio 
X V U=  is distributed according to ( )f x . 

Example: Standard normal 

( )

( )

2

2

1exp
2
1exp
4

h x x

h x x

⎛ ⎞= −⎜ ⎟
⎝ ⎠
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

( )
( )

0 1

2 exp 0.5

u

v

k h

k

= =

= −
 

0.0 0.2 0.4 0.6 0.8 1.0
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S_h
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v

 



38 

Generate 

( )
( ) ( )( )

~ 0,1

~ 2 exp 0.5 , 2 exp 0.5

U U

V U − − −
 

Accept X V U=  if 

( )2 2exp 0.25U V U≤ −  

The acceptance rate for this procedure is about 
62.6% 

 

 


