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Target tracking example 

Filtering: 1:t tX Y⎡ ⎤⎣ ⎦  (main interest) 

Smoothing: 1: 1:t tX Y⎡ ⎤⎣ ⎦  (also given with SIS) 

However as we have seen, the estimate of this 
distribution breaks down when t gets large due 
to the weights becoming degenerate (if we don’t 
resample). 

If we resample, most of the values sampled for 
1X  will disappear when t gets large (related to 

the weight breakdown). 

So SIS isn’t useful for all problems. 

 

Gibbs sampling 

Special case of Markov Chain Monte Carlo 
(MCMC) 

Instead of generating independent samples, it 
generates dependent samples via a Markov 
chain. 

1 2 3X X X→ → →… 

Useful for a wide range of problems. 
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Popular for Bayesian analyses, but is a general 
sampling procedure.  For example, it can be 
used to do smoothing in the target tracking 
example. 

Similar to SIS in that the random variable X is 
decomposed into { }1 2, , , kX X X X= …  and each 
piece is simulated separately. 

However the conditioning structure is different.  
When sampling jX , it is drawn conditional on 
all other components of X. 

 

Gibbs sampler 

A) Starting value: { }0 0 0 0
1 2, , , kX X X X= …  

 Picked by some mechanism 

B) Sample { }1 2, , ,t t t t
kX X X X= …  by 

 1) 1 1 1
1 1 2 3~ , , ,t t t t

kX X X X X− − −⎡ ⎤⎣ ⎦…  

 2) 1 1
2 2 1 3~ , , ,t t t t

kX X X X X− −⎡ ⎤⎣ ⎦…  

 … 
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 j ) 1 1
1 1 1~ , , , , ,t t t t t

j j j j kX X X X X X− −
− +

⎡ ⎤⎣ ⎦… …  

 … 

 k ) 1 1~ , ,t t t
k j kX X X X −

⎡ ⎤⎣ ⎦…  

Under certain regularity conditions, the 
realizations 1 2 3, , ,X X X … form a Markov chain 
with stationary distribution [ ]X . 

Thus the realizations can be treated as 
dependent samples from the desired 
distribution. 

Example: (Nuclear pump failure) 

Gaver & O’Muircheartaigh (Technometrics, 
1987) 

Gelfand & Smith (JASA, 1990) 

Observed 10 nuclear reactor pumps 

Counted the number of failures for each pump 
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Pump Failures ( is ) Obs Time ( it ) Obs Rate ( il ) 

1 5 94.320 0.053 

2 1 15.720 0.064 

3 5 62.880 0.080 

4 14 125.760 0.111 

5 3 5.240 0.573 

6 19 31.440 0.604 

7 1 1.048 0.954 

8 1 1.048 0.954 

9 4 2.096 1.910 

10 22 10.480 2.099 

(Obs Time in 1000’s of hours) 

(Obs Rate = Failures / Time) 
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Want to determine the true failure rate for each 
pump with the following hierarchical model 

( )
( )
( )

~ Poisson

~ Gamma ,

~ IGamma ,1

i i i i

i

s tλ λ

λ β α β

β γ δ

 

Note: ( )~ IGamma ,1β γ δ  is equivalent to  

( )1 ~ Gamma ,1γ δ
β
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Want to determine 

1) i Sλ⎡ ⎤⎣ ⎦  for each pump i = 1, … , 10 

2) Sβ⎡ ⎤⎣ ⎦  

where( { }1 10, ,S s s= … ) 
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Note that both sets of these distributions are 
hard to get analytically. 

Can show that 

( )
( ) ( )

1

10

1 i i i is s t
i i

ii

t ep S
s

α α λ

α γ

λ
λ

αδ λ

+ + − −

+∝
Γ ++

∏
∑

 

where { }1 10, ,λ λ λ= … . 

Note that the λ’s are correlated and trying to 
get the marginal for each looks to be 
intractable analytically. 

Run a Gibbs sampler to determine , Sλ β⎡ ⎤⎣ ⎦ .  
From this sampler we can get the desired 
distributions Sλ⎡ ⎤⎣ ⎦  and Sβ⎡ ⎤⎣ ⎦ . 

A possible Gibbs scheme 

Step 1)  Sample ( )1 1 1~ , ,Sλ λ λ β−
⎡ ⎤
⎣ ⎦  

 … 

Step 10) Sample ( )10 10 10~ , ,Sλ λ λ β−
⎡ ⎤
⎣ ⎦  

Step 11) Sample ~ ,Sβ β λ⎡ ⎤⎣ ⎦ 

where ( ) { }1 1 1 10, , , , ,j jjλ λ λ λ λ− +− = … …  
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Need the following conditional distributions 

( )~ , , ,

1Gamma ,
1

j j j jj

j
j

S s

s
t

λ λ λ β λ β

α
β

−
⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦

⎛ ⎞
= +⎜ ⎟⎜ ⎟+⎝ ⎠

 

~ ,

1IGamma 10 ,
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Sβ β λ β λ

γ α
δ λ

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦
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This can be gotten from the joint distribution 
by including only the terms in the product that 
contain the random variable of interest 

[ ] ( )
( ) ( )

110 10

1
1 1

, ,
!

i i i i
s t

i i i
a

i ii

t e e eS
s

λ λ βα γ δ β

γ

λ λ δλ β
β α β γ

− −− −

+
= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟ Γ Γ⎝ ⎠⎝ ⎠
∏ ∏  

e.g. for jλ , which terms above have a jλ  in 
them. 
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Equivalently, you can do this by looking at the 
graph structure of the model by only including 
terms that correspond to edges joining to the 
node of interest. 

e.g. for β, which edges connect with the node 
for β. 

 
 

Example Run: 

α = 1.8 

δ = 1 

γ = 0.1 

n = 1000 
0 lβ =  

λ 

S 

β 
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Pump Mean Median Std Dev 

1 0.0702 0.0668 0.0268 

2 0.1542 0.1363 0.0925 

3 0.1039 0.0988 0.0399 

4 0.1233 0.1206 0.0310 

5 0.6263 0.5805 0.2924 

6 0.6136 0.6040 0.1351 

7 0.8241 0.7102 0.5267 

8 0.8268 0.7129 0.5309 

9 1.2949 1.2040 0.5776 

10 1.8404 1.8121 0.3903 

 

 Mean Median Std Dev 

Beta 0.4372 0.4161 0.1315 
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Target tracking with the Gibbs sampler 

As mentioned last time, the smoothing 
problem, 1: 1:k kX Y⎡ ⎤⎣ ⎦ , isn’t solved very well with 
SIS.  However it can be done very easily with 
Gibbs sampling. 

Step j, j = 1, … , k – 1 

 Draw 1 1~ , ,j j j j jX X X X Y− +
⎡ ⎤⎣ ⎦  

Step k 

 Draw 1~ ,k k k kX X X Y−⎡ ⎤⎣ ⎦  

As all the components involved in these 
conditional distributions are normal, each of 
these conditional distributions are normal, 
thus are easily sampled. 

In the SIS analysis, it was assumed that all of 
the parameters of the movement and 
measurement error distributions (all variances) 
and the starting point were assumed known. 

This can easily be relaxed by putting priors on 
0X , Λ, and Σ and sampling them as well as part 

of the Markov chain. 
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The sampler needs to be modified as 

Step 0 

 Draw 0 0 1~ ,X X X⎡ ⎤Λ⎣ ⎦  

Step j, j = 1, … , k – 1 

 Draw 1 1~ , , ,j j j j jX X X X Y− +
⎡ ⎤Λ⎣ ⎦  

Step k 

 Draw 1~ , ,k k k kX X X Y−⎡ ⎤Λ⎣ ⎦  

X0 X1 X2 X3 

Z1 Z2 Z3 

Σ 

Λ 
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Step k + 1 

 Draw 0:~ kX⎡ ⎤Λ Λ⎣ ⎦  

Step k + 2 

 Draw 0: 1:~ ,k KX Y⎡ ⎤Σ Σ⎣ ⎦  

This can be performed by Gibbs sampling if the 
priors on 0X  is Normal and the priors on Λ and 
Σ are IGamma. 

 

Conditions for Gibbs Sampling to work 

While you can always run the chain, it may not 
give the answer you want.  That is, the 
realizations may not have the desired 
stationary distribution. 

One-step transitions: ( )p x y  

n-step transitions: ( )np x y . 

Stationary distribution:  

( ) ( )lim nn
x p x yπ

→∞
=  
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If it exists, it satisfies 

( ) ( ) ( )x p x y y dyπ π= ∫  

A stronger condition which shows that ( )xπ  is 
the density of the stationary distribution is 

( ) ( ) ( ) ( )x p y x y p x yπ π=  

holds for all x & y (detailed balance). 

Note that detailed balance ⇒ stationarity but 
stationarity doesn’t imply detailed balance. 

 

If the following two conditions hold, the chain 
will have the desired stationary distribution. 

 

Irreducibility:  The chain generated must be 
irreducible.  That is it is possible to get from 
each state to every other state in a finite 
number of steps. 
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Not all problems lead to irreducible chains. 

Example: ABO blood types 

The children’s data 
implies that the child 
with blood type AB must 
have genotype AB and 
that the child with blood 
type O must have 
genotype OO. 

The only possible way 
for the two children to 

inherit those genotypes if for one parent to 
have genotype AO and for the other parent to 
have genotype BO.  However it is not possible 
to say which parent has which genotype with 
certainty. 

By a simple symmetry argument 

[ ]
[ ]

&

&
0.5

P Dad AO Mom BO

P Dad BO Mom AO

= =

= = =

=

 

 

AB 
 

O 

 

? 
 

? 
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Lets try running a Gibbs sampler, by first 
generating mom’s genotype given dad’s and 
then dad’s given mom’s. 

Let start the chain with Dad = AO. 

Step 1: Generate Mom 

0P Mom AO Dad AO⎡ ⎤= = =⎣ ⎦  

1P Mom BO Dad AO⎡ ⎤= = =⎣ ⎦  

 so Mom = BO. 

Step 2: Generate Dad 

1P Dad AO Mom BO⎡ ⎤= = =⎣ ⎦  

0P Dad BO Mom BO⎡ ⎤= = =⎣ ⎦  

 so Dad = AO. 

This implies that every realization of the chain 
has Mom = BO & Dad = AO. 

If the chain is started with Dad = BO, every 
realization of that chain will have Mom = AO & 
Dad = BO. 
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The reducible chain in this case does not have 
the correct stationary distribution.  (Well 
reducible chains don’t really have stationary 
distributions anyway).  But running the 
described Gibbs sampler will not correctly the 
describe the distribution of the mother and 
father’s genotypes. 

 

Aperiodicity: 

Don’t want a periodic chain (e.g. certain states 
can only occur on when t is even) 

This violates the idea that each state has a long 
run frequency marginally. 

 

Starting Points 

For every chain you need to specify a starting 
point.  There are a number of approaches for 
choosing this. 

1) Prior means 

 In pump example, set [ ]0 E δβ β
γ

= = . 
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2) Estimate from data 

In pump example, [ ]iE l αβ= , so set 0 lβ
α

= . 

In target tracking example, set starting 
positions at each time to average observed 
positions, the differences of these to get the 
velocities. 

3) Sample from prior 

4) Ad hoc choices 

 In pump example, set 0β = ∞  

For many problems, this choice can be 
important.  The stationary distribution is an 
asymptotic property and it may take a long 
time for the chain to converge. 
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Starting with 0 0β =  (actually 10010− ), the initial 
draws are not consistent with the stationary 
distribution seen later in the chain. 

While for this example, the problem clears up 
quickly, for other problems it can take a while. 

This is more common which larger problems, 
that might have millions, or maybe billions of 
variables being sampled in a complete single 
scan through the data.  This can occur with 
large space time problems, such as the Tropical 
Pacific sea surface temperature predictions 
discussed at <http://www.stat.ohio-
state.edu/~sses/collab_enso.php>. 
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Forecast map for December 2002 based on 
data from January 1970 to May 2002 

 
Observed December 2002 map 

 
 

The usual approach to have a “burn-in” period 
where  the initial samples are thrown away 
since they may not be representative of 
samples from the stationary distribution. 
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The following table contains estimates of the 
posterior means of the 11 parameters in the 
pump example with 3 different starting points.  
The first 200 imputations were discarded and 
then the next 1000 imputations were sampled. 

 

Pump 0 lβ α=  0β = ∞  0 0β =  

1 0.0688 0.0704 0.0715 

2 0.1531 0.1531 0.1575 

3 0.1064 0.1024 0.1050 

4 0.1234 0.1236 0.1221 

5 0.6008 0.6198 0.6319 

6 0.6116 0.6145 0.6163 

7 0.7744 0.8501 0.8118 

8 0.8173 0.8224 0.8190 

9 1.2584 1.2748 1.2857 

10 1.8393 1.8536 1.8409 

    

β 0.4256 0.4358 0.4334 
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Often the bigger the problem, the longer the 
burn-in period desired.  However those are the 
problems where time considerations will limit 
the total number of imputations that can be 
done. 

So you do want to think about starting values 
for your chain. 

 

Gibbs sampling and Bayes – Choice of priors 

For Gibbs sampling to be efficient, the draws in 
each step of the procedure need to be feasible. 

That suggests that conjugate distributions need 
to be used as part of the hierarchical model, as 
was done in pump and target tracking 
examples. 

However conjugacy is not strictly required, as 
rejection sampling with log-concave 
distributions might be able to be used in some 
problems. 

This idea is sometimes used in the software 
package WinBUGS (Bayesian analysis Using 
Gibbs Sampling). 
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However for some problems the model you 
want to analyze is not conjugate and the tricks 
to get around non-conjugacy won’t work. 

For example, lets change model for the pump 
example to 

( )
( )

( )
( )

2 2

2

~ Poisson

, ~ LogN ,

~ Logistic ,

~ Weibull ,

i i i i

i

s tλ λ

λ µ σ µ σ

µ ν τ

σ α β

 

Good luck on running a Gibbs sampler on this 
model (I think). 

Other sampling techniques are needed, for this 
and other more complicated problems. 
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Metropolis – Hastings Algorithm (M-H) 

A general approach for constructing a Markov 
chain that has the desired stationary 
distribution ( ( )j jπ π= ) 

1) Proposal distribution: 

Assume that tX i= .  Need to propose a new 
state with distribution ( )ijq q j i= . 

2) Calculate the Hastings’ ratio 

min ,1j ji
ij

i ij

q
a

q
π
π

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 

3) Acceptance/Reject step 

Generate ( )~ 0,1U U  and set 

( )
1

if 

otherwise
ijt

t

j U a
X

i X
+

≤⎧⎪= ⎨ =⎪⎩
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Notes: 

1) Gibbs sampling is a special case of M-H as 
for each step, 

1j ji

i ij

q
q

π
π

=  

which implies the relationship also holds 
for a complete scan through all the 
variables. 

2) The Metropolis (Metropolis et al, 1953) 
algorithm was based on a symmetric 
proposal distribution ( ij jiq q= ) 

min ,1j
ij

i

a
π
π

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 

So a higher probability state will always be 
accepted. 

3) As with many other sampling procedures, π 
and q only need to be known up to 
normalizing constants as they will be 
cancelled out when calculating the 
Hastings’ ratio. 
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4) Periodicity isn’t a problem usually. 

 For many proposals, 0iiq >  for all i.  Also if 
1ija < , 1 0t tP X i X i+⎡ ⎤= = >⎣ ⎦ , thus some 

states have period 1, which implies the 
chain is aperiodic. 

5) ij ijq a  gives the 1-step transition probabilities 
of the chain (e.g. its ( )p x y  in the earlier 
notation). 

6) Detailed balance is easy.  Without loss of 
generality, assume that  

1j ji

i ij

q
q

π
π

<  

(which implies 1ija <  and 1jia = ) 

Then  

j ji
i ij ij i ij

i ij

j ji

j ji ji

q
q a q

q
q
q a

π
π π

π

π

π

=

=

=
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7) The big problem is irreducibility.  However 
by setting the proposal to correspond to a 
irreducible chain solves this. 

 

Proposal distribution ideas: 

1) Approximate the distribution.  For example 
use a normal with similar means and 
variances.  Or use a t with a moderate 
number of degrees of freedom. 

2) Random walk 

( ) ( )q y x q y x= −  

 If there is a continuous state process, you 
could use 

( ); ~y x qε ε= + •  

 For a discrete process, you could use 

( )
0.4 1
0.2
0.4 1

j i
q j i j i

j i

= −⎧
⎪= =⎨
⎪ = +⎩
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3) Autoregressive chain 

( ) ( ); ~y a B x a z z q= + − + •  

 For the random walk and autoregressive 
chains, q does not need to correspond to a 
symmetric distribution (though that is 
common). 

4) Independence sampler 

( ) ( )q y x q y=  

 For an independence sampler you want q to 
be similar to π. 

min ,1j i
ij

i j

q
a

q
π
π
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 

 If they are too different, i iq π  could get very 
small, making it difficult to move from state 
i.  (The chain mixes slowly). 
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5) Block at a time 

Deal with variables in blocks like the Gibbs 
sampler.  Sometimes referred to Metropolis 
within Gibbs. 

Allows for complex problems to be broken 
down into simpler ones. 

Any M-H style update can be used within 
each block (e.g. random walk for one block, 
independence sampler for the next, Gibbs 
for the one after that). 

Allows for a Gibbs style sampler, but 
without the worry about conjugate 
distributions in the model to make 
sampling easier. 

 

Pump Example: 

( )
( )

( )
( )

2 2

2

2

~ Poisson

, ~ LogN ,

~ ,

~ IGamma ,

i i i i

i

s t

N

λ λ

λ µ σ µ σ

µ ν τ

σ γ δ
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Can perform Gibbs on µ and 2σ  but not on λ, 
due the non-conjugacy of the Poisson and log 
Normal distributions. 
 

Step i, i = 1, … , 10 (M-H): 

Sample iλ  from 2,i sλ µ σ,  with proposal 

( )* 2~ logN ,i iλ λ θ  (Multiplicative random walk) 

( )

( )

*
*

*
*

*

*

*

log1

log1

log log1

log log1

i i i

i i i

s t i
i i

i

s t i
i i

i

i i

i

i i

i

t e
HR

t e

λ

λ

λ µλ φ
σλ σ
λ µλ φ

λσ σ

λ λφ
λθ θ

λ λφ
θλ θ

−

−

⎛ ⎞−
⎜ ⎟
⎝ ⎠=

−⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞−
⎜ ⎟
⎝ ⎠×
⎛ ⎞−
⎜ ⎟
⎝ ⎠

 

( )min ,1ija HR=  
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Step 11 (Gibbs): 

Sample µ from ( )2 2, , , ~ mean,varNµ λ σ ν τ  

where 

2 2

1

2 2

1mean var log

1var

i

n

νλ
σ τ

σ τ

−

⎛ ⎞= +⎜ ⎟
⎝ ⎠

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑
 

Step 12 (Gibbs): 

Sample 2σ  from  

( )

2

2

, , ,

1~ IGamma 5, log
2 i

σ λ µ γ δ

γ δ λ µ⎛ ⎞+ + −⎜ ⎟
⎝ ⎠

∑
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Parameters for run 

Burn-in: 1000 

Imputations: 100,000 

ν = -50 
2τ  = 100 

γ = 1 

δ = 100 
2θ  = 0.01 

Starting values 

i ilλ =  

1 log
10 ilµ = ∑  

( )22 1 log
9 ilσ µ= −∑  
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Other options 

1) Combine steps 1 – 10 into a single draw. 

With this option all λs change or none do.  
In the sampler used, whether each λ 
changes is independent of the other λs. 

The option used is probably preferable, as it 
should lead to better mixing of the chain. 

2) Combine sampling λ, µ, and 2σ  into a single 
M-H step.  Probably suboptimal as the 
proposal distribution won’t be a great 
match for the joint posterior distribution of 
λ, µ, and 2σ . 
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Rejection rates 

Having some rejection can be good. 

With the multiplicative random walk sampler 
used, if 2θ  is too small, there will be very few 
rejections, but the sampler will move too slowly 
through the space. 

Increasing 2θ  will lead to better mixing, as 
bigger jumps can be made, though it will lead 
to higher rejection rates. 

You need to find a balance between rejection 
rates, mixing of the chain, and coverage of the 
state space. 

For some problems, a rejection rate of 50% is 
fine and I’ve seen reports for large problems 
using normal random walk proposals the 
rejection rates of 75% are optimal. 
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Rejection rates for failure rates proposals under 
different random walk variances 
 

Pump 0.000001 0.0001 0.01 0.04 

1 0.00012 0.00613 0.07045 0.13776 

2 0.00009 0.00531 0.03141 0.06130 

3 0.00034 0.00784 0.07107 0.13754 

4 0.00043 0.01126 0.11705 0.22482 

5 0.00028 0.00691 0.05521 0.10705 

6 0.00126 0.01442 0.13511 0.26028 

7 0.00012 0.00148 0.03027 0.05735 

8 0.00007 0.00414 0.02854 0.05824 

9 0.00024 0.00559 0.06105 0.12131 

10 0.00070 0.01461 0.14790 0.27735 
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Standard errors in MCMC 

As discussed before, the correlation of the 
chain of the chain must be taken into account 
when determining standard errors of quantities 
estimated by the sampler. 

Suppose we use x  to estimate and that the 
burn-in period was long enough to get into the 
stationary distribution.  Then 

( ) ( )
2 1

2
1

Var 2
n

j
j

x n n j
n
σ ρ

−

=

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑  

For a reasonable chain, the autocorrelations 
will die off and so lets assume that they will be 
negligible for j > K.  Then the above reduces to 

( ) ( )
2

2
1

Var 2
K

j
j

x n n j
n
σ ρ

=

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑  

If the autocorrelations die off fairly quickly, 2σ  
and jρ  can be estimated consistently (though 
with some bias) by the usual empirical 
moments. 
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Another approach is blocking.  Assume that n = 
Jm for integers J and m.  Then let 

( )1 1

1 ; 1, ,
jm

j i
i j m

x x j J
m = − +

= =∑� …  

Note that x x= � .  If m is large relative to K, then 
the correlations between the jx�  should 
negligible and the variance can be estimated as 
if the jx�  were independent. 

If the correlation is slightly larger, it might be 
reasonable to assume that the correlation 
between jx�  and 1jx +�  is some value ρ to be 
determined, but that correlations at larger lags 
are negligible.  In this case 

( ) ( )1 2Var Var jx x
J
ρ+��  
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Estimates with m = 100 
 

Parameter x  SE ρ 

1λ  0.05290 0.00071 0.36116 

2λ  0.06926 0.00277 0.66197 

3λ  0.07837 0.00106 0.35354 

4λ  0.11053 0.00056 0.10520 

5λ  0.56167 0.01119 0.46975 

6λ  0.60546 0.00237 0.10960 

7λ  0.92318 0.04068 0.67346 

8λ  0.90361 0.03766 0.63510 

9λ  1.82900 0.02884 0.33629 

10λ  2.10188 0.00726 0.05263 

µ -2.52492 0.01384 0.41517 
2σ  27.15958 0.09967 0.07579 
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Estimates with m = 1000 
 

Parameter x  SE ρ 

1λ  0.05290 0.00075 0.13239 

2λ  0.06926 0.00399 0.18756 

3λ  0.07837 0.00088 -0.13079 

4λ  0.11053 0.00045 -0.15794 

5λ  0.56167 0.01205 -0.00838 

6λ  0.60546 0.00226 -0.07845 

7λ  0.92318 0.06081 0.12201 

8λ  0.90361 0.04822 0.04495 

9λ  1.82900 0.03303 0.07779 

10λ  2.10188 0.00757 0.06487 

µ -2.52492 0.01981 0.15224 
2σ  27.15958 0.13956 0.29726 
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Standard error estimates for pump example 
 

 m = 1000 m = 100 Independent 

1λ  0.000752 0.000710 0.000075 

2λ  0.003992 0.002769 0.000205 

3λ  0.000885 0.001063 0.000111 

4λ  0.000446 0.000555 0.000094 

5λ  0.012051 0.011193 0.001009 

6λ  0.002258 0.002373 0.000439 

7λ  0.060813 0.040679 0.002970 

8λ  0.048219 0.037656 0.002807 

9λ  0.033030 0.028835 0.002945 

10λ  0.007568 0.007264 0.001428 

µ 0.019808 0.013840 0.005729 
2σ  0.139560 0.099674 0.056767 

 


