
Solution of non-linear equations 

Finding MLEs, posterior modes (MAP 
estimates), minimizing loss functions, etc. 

In many cases, this problem reduces to solving 
a nonlinear equation as 

arg min f(x) or arg max f(x) usually satisfies 
f’(x) = 0. 

Usually easier to solve f’(x) = 0 than to deal 
with f(x) directly. 

There are lots of ways to do this.  Three 
popular approaches are bisection, functional 
iteration, and Newton-Raphson. 

Bisection (for 1 dimension problems) 

Have continuous function g(x) and two values 
a0 and b0 such that 

g(a0) > 0 and g(b0) < 0  (or vice versa) 

 

a0 b0 
0 



We know that there exists at least one point, x* 
in (a0, b0) such that g(x*) = 0 by the 
intermediate value theorem. 

Idea: try midpoint of interval 

c = 
+0 0

2
a b

 & evaluate g(c) 

 
If g(c)g(a0) > 0 set a1 = c, b1 = b0 and continue 

 {g(c) and g(a) are both > 0 or both < 0 so  
 must be a root between c and b} 

If g(c)g(a0) < 0 set a1 = a0, b1 = c and continue 

 {g(c) and g(a) are on opposite side so there  
 must be a root between a and c} 

If g(c) = 0 stop 

Continue until the interval width gets small 
enough. 

a0 b0 
0 

c 



After n steps, the interval width = bn – an  

= 
−0 0

2n

b a
. 

Set *x̂  = +
2

n na b , the midpoint of the last 

interval as the estimate of the root x̂ . 

Since it’s the midpoint of the last interval, the 
maximum error satisfies 

| *x̂  - x̂ | ≤ +

−0 0
12n

b a
 

Example: Linkage Analysis (Rao, 1973, pp 268-
269) 

2 gene on a chromosome are separated by a 
recombination fraction θ (θ ≤ ½). 

This organism can pass 4 
possible haplotypes to its 
offspring 

 
Haplotype Probability 

AB (1 – θ)/2 
Ab θ/2 
aB θ/2 
ab (1 – θ)/2 

A 

B 

a 

b 



An experiment was performed to estimate θ.  
The breeding experiment crossed AB|ab x 
AB|ab and recorded the observed phenotypes. 

In this experiment, 2 dominate traits were 
observed (A dominant to a, B dominate to b). 

While there are 16 possible joint haplotypes in 
the offspring (4 from father times 4 from 
mother), there are only 4 possible phenotypes 
 

Phenotype Probability Counts 

AB (3 – 2θ + θ2)/4 125 

Ab (2θ – θ2)/4 18 

aB (2θ – θ2)/4 20 

ab (1 – 2θ + θ2)/4 34 

Note that this problem is easier to solve with 
the transformation (Lange page 126, problem 7) 

λ θ θ θ= − + = −2 21 2 (1 )  

θ λ= −1  

Under this transformation, the probabilities are 

 



Phenotype Probability Counts 

AB (2 + λ)/4 125 

Ab (1 – λ)/4 18 

aB (1 – λ)/4 20 

ab λ/4 34 

The likelihood and log likelihood functions are 

λ λ λ λ+∝ + −125 18 20 34( ) (2 ) (1 )L  

λ λ λ λ= + + − +log ( ) 125 log(2 ) 38 log(1 ) 34 logL  

which gives the score function 

λ λ
λ λ λ λ

= = − +
−

125 38 34( ) log ( )
1

dl L
d
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The bisection algorithm for l(λ) with a0 = 0.5 
and b0 = 0.9 gives λ *ˆ =0.6268 after 20 steps.  
The convergence pattern can be seen with 
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Iterate λ l(λ) 
1.0000 0.7000 -31.7989 
2.0000 0.6000 9.7436 
3.0000 0.6500 -9.0939 
4.0000 0.6250 0.6857 
5.0000 0.6375 -4.1009 
6.0000 0.6312 -1.6835 
7.0000 0.6281 -0.4931 
8.0000 0.6266 0.0977 
9.0000 0.6273 -0.1973 
10.0000 0.6270 -0.0497 
11.0000 0.6268 0.0240 
12.0000 0.6269 -0.0128 
13.0000 0.6268 0.0056 
14.0000 0.6268 -0.0036 
15.0000 0.6268 0.0010 
16.0000 0.6268 -0.0013 
17.0000 0.6268 -0.0002 
18.0000 0.6268 0.0004 
19.0000 0.6268 0.0001 
20.0000 0.6268 -0.0000 



For this example, 

max error ≤ −
21

0.9 0.5
2

 = 1.9 x 10-7 

To get θ *ˆ , use θ λ= −1 , which gives  

θ *ˆ  = 1 – 0.6268  = 0.2083 

Note that the maximum error in with the 
estimate θ *ˆ  needs to be carefully thought 
about, since the transformation is non-linear. 

How many iterations for the bisection 
algorithm? 

Once a0 and b0 are determined its easy.  Base 
on a maximum desired error 

Want +

−0 0
12n

b a
 ≤ M.  Then set n to satisfy 

−⎛ ⎞≥ −⎜ ⎟
⎝ ⎠

−⎛ ⎞= −⎜ ⎟
⎝ ⎠

0 0
2

0 0

log 1

log /log 2 1

b an
M

b a
M

 

For example, for M = 0.0001 



−⎛ ⎞≥ − =⎜ ⎟
⎝ ⎠

0.9 0.5log /log 2 1 10.9
0.0001

n  

so use at least 11 iterates. 

Advantages of the bisection method: 

• Must terminate 

• Guaranteed to find a zero of the function to 
desired accuracy 

Disadvantages: 

• Can only handle univariate problems 

• Linear convergence (Other algorithms, such 
as Newton-Raphson can be faster) 

• From optimization point of view, not 
guaranteed to find an optima. 

Note that this disadvantage is not really 
specific to bisection, but to using root finders 
on the derivative of the function to be 
optimized. 

Solving ='( ) 0f x  may give a minimum or a 
saddle point when a maximum is desired. 



Need to check ( )f x  or ''( )f x  to see if *x̂  is a 
local maximum (e.g. is *ˆ''( )f x  < 0 or is '( )f x  a 
decreasing function around *x̂ ) 

In this case, the log likelihood is definitely 
concave, so we have found the MLE 
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One thing to note with the bisection algorithm 
when used to optimize a likelihood function, 
the likelihood (or log likelihood) does not have 
to increase at each step, particularly for the 
early iterates.  However it will tend to do this 
once you are in the area of the optima, as can 
be seen in the following figure. 
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For comparison, the true MLE can be 
calculated for the linkage example.  As seen 
last time 

l(λ) = 
λ+

125
2

 – 
λ−

38
1

 + 
λ
34 = 0 

which is equivalent to solving 

 125(1 – λ)λ – 38(2 + λ)λ + 34(2 + λ)(1 – λ) = 0 

 = -197λ2 + 15λ + 68 

The two roots of this equation are 0.6268215 
and -0.5506794.  Only the first one is valid 
since λ must be in the range [0.25, 1]. 

There are other approaches similar to 
bisection.  One useful one is the method of 
False Position (Regula Falsi). 

A motivation behind this method is that the 
function is approximately linear in the region of 
interest. 



 
Join points (ai, g(ai)) and (bi, g(bi)) with a 
straight line and find the point where the 
straight line intersects with the line y = 0 (call 
point pi. 

Line: l(x) = 
−

+ −
−

1( ) ( )
( ) ( )i

i i
i i

g b g ag a x a
b a

 

l(x) = 0  ⇒ pi = 
−

−
−1

( ) ( )
( ) ( )
i i i

i
i

b a g aa
g b g a

 

If g(pi)g(ai) > 0 set ai+1 = pi and bi+1 = bi 

If g(pi)g(ai) < 0 set ai+1 = ai and bi+1 = pi 

For some problems, this approach can be faster 
than bisection, but it depends on the shape of 
the function and the starting endpoints. 

Also its harder to show convergence to the root 
since the interval size doesn’t have to go to zero 
like with bisection.  The can happen with a 
convex or concave function. 

a0 b0 
0 



However, this routine will eventually converge 
to a root.  This can be shown since {ai} is an 
non-decreasing sequence bounded above and 
{bi} is an non-increasing sequence bounded 
below. 
 

 Bisection Regula Falsi 

Iterate Lower Upper Lower Upper 

0 0.5000 0.9000 0.5000 0.9000 

1 0.5000 0.7000 0.5492 0.9000 

2 0.6000 0.7000 0.5779 0.9000 

3 0.6000 0.6500 0.5955 0.9000 

4 0.6250 0.6500 0.6066 0.9000 

5 0.6250 0.6375 0.6137 0.9000 

6 0.6250 0.6312 0.6183 0.9000 

7 0.6250 0.6281 0.6212 0.9000 

8 0.6266 0.6281 0.6232 0.9000 

9 0.6266 0.6273 0.6244 0.9000 

10 0.6266 0.6270 0.6253 0.9000 

11 0.6268 0.6270 0.6258 0.9000 

12 0.6268 0.6269 0.6262 0.9000 

13 0.6268 0.6269 0.6264 0.9000 

14 0.6268 0.6268 0.6265 0.9000 

15 0.6268 0.6268 0.6266 0.9000 

16 0.6268 0.6268 0.6267 0.9000 

17 0.6268 0.6268 0.6267 0.9000 

18 0.6268 0.6268 0.6268 0.9000 

19 0.6268 0.6268 0.6268 0.9000 

20 0.6268 0.6268 0.6268 0.9000 



0 2 4 6 8 10 12 14 16 18 20
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Iterate

R
oo

t E
st

im
at

e

a0 = 0.5, b0 = 0.9

Bisection
Regula Falsi

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Iterate

|E
rro

r|

a0 = 0.5 b0 = 0.9

Bisection
Regula Falsi



0 2 4 6 8 10 12 14 16 18 20
0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

Iterate

R
oo

t E
st

im
at

e

a0 = 0.6, b0 = 0.75

Bisection
Regula Falsi

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iterate

|E
rro

r|

a0 = 0.6 b0 = 0.75

Bisection
Regula Falsi

 



0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
-300

-250

-200

-150

-100

-50

0

50

λ

l( λ
)

a0 = 0.5, b0 = 0.9

0.6 0.65 0.7

-60

-50

-40

-30

-20

-10

0

10

λ

l( λ
)

a0 = 0.6, b0 = 0.75

 



Functional Iteration (Fixed Point Approaches) 

Instead of solving g(x) = 0, we can investigate 
the function 

f(x) = g(x) + x 

Solving g(x) = 0 is the same as solving f(x) = x. 

In many situations, iterates of the sequence  
xn = f(xn-1) converge to a root of g(x) starting 
from any point x0 nearby. 

But it doesn’t have to! 

Lets run this algorithm starting at x0 = 0.62 
and x0 = 0.63, which are both close to the true 
root of 0.6268215. 
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In both cases, the iterates seem to diverge, or 
at least don’t seem to converge in the right 
region. 

Lets look at the function f(x), in particular its 
derivative. 
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So small changes in x lead to large changes in 
f(x), even very close to the fixed point. 

So we need conditions on when fixed point 
methods can work 



Proposition 5.3.1: Suppose f(x) defined on a 
closed interval I satisfies the conditions 

1) f(x) ∈ I whenever x ∈ I 

2) |f(y) – f(x)| ≤ λ|y – x| for any two points x & 
y in I. 

Then provided the Lipschitz constant λ is in  
[0, 1), f(x) has a unique fixed point x∞ ∈ I, and 
the functional iterates xn = f(xn-1) converge to x∞ 
regardless of the starting point x0 ∈ I.  
Furthermore, we have the precise error 
estimate 

|xn – x∞| ≤ λ
λ−1

n

|x1 – x0| 

(For proof, see Lange) 

 

So if f(x) (and g(x)) is nice enough, we can be 
guaranteed to find the desired root. 

Need to get a handle on the Lipschitz constant 
λ.  Usually you can use an upper bound on 
| '( )f x |. 
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What happened in the linkage example.  Well  
λ > 360.  So for an x near (but not equal to x∞) 

|f(x) – x∞| = | '( )f z  (x – x∞)| (Mean value 
theorem) 

       ≥ 360 |x – x∞| ≥ |x – x∞| 

So there was no way that this approach could 
work.  This situation is known as repulsive.  
You have to end up further from the fixed point 
than where you started. 

If | ∞'( )f x | < 1, the situation is known as 
attractive. 



If | ∞'( )f x | = 1, the situation is indeterminant 
and investigation of the function is required. 

Example: Extinction Probabilities of Branching 
Processes (Section 5.3.2) 

Stochastic process that describes a model of 
population growth. 

Start with 1 particle.  This particle has k 
offspring with probability pk.  Each of these k 
particles generates offspring by the same 
mechanism.  And so on for these offspring. 

One question of interest is whether the 
population will completely die out. 

This question can be answered by investigating 
the generating function of the process 

P(s) = 
∞

=
∑

0

k
k

k
p s  

If p0 = 0, the population can never die out, so 
we will only consider the case p0 > 0. 

It ends up that the probability that the 
population will eventually die out satisfies the 
fixed point equation 

s = P(s) 



This equation can have 1 or 2 fixed points.  The 

point s = 1 must be one as 
∞

=
∑

0
k

k
p = 1.  It can be 

two since P(0) > 0 (we’ll also ignore the case 
where p0 = 1) and P(s) is a convex function in 
[0,1] since 

P’’(s) = 
∞

−

=

−∑ 2

2

( 1) k
k

k
k k p s  > 0 

Since its convex, it will intersect a straight line 
at most twice.  However the second point of 
intersection may not be in [0,1] (if it exists).  
The function must look like one of the 
following. 
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Which occurs depends on P’(1), the mean 
number of offspring for each particle.  If  
P’(1) ≤ 1, the first situation must happen.  The 
second situation will occur with If P’(1) > 1. 

Note that the extinction probability is the 
smaller fixed point when P’(1) > 1.  (s = 1 is a 
point of repulsion). 

When P’(1) > 1, we can find the fixed point by 
iterating starting at s0 = 0.  This works since  
0< P’(s) < 1 and P(s) ≤ s for s ∈ [0, s∞].  Usually 
it will be for s ∈ [0, s∞ + δ], where δ > 0. 

Lets look at Lotka’s example examining the 
extinction of surnames among white male in 
the US based on 1920 census data. 

P(s) = 0.4982 + 0.2103s + 0.1270s2  
    + 0.7330s3 + 0.0418s4 + 0.0241s5  
    + 0.0132s6 + 0.0069s7 + 0.0035s8  

+ 0.0015s9 + 0.0005s10 
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The method converges slowly to the extinction 
probability of 0.879755. 

After 50 steps, we can show that 

Bound: |sn – s∞| ≤ λ
λ−1

n

|s1 – s0| = 0.0039 

Actual: |sn – s∞| = 0.000105 
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Why is convergence slow? 

Error estimate bound  

|sn – s∞| ≤ λ
λ−1

n

|s1 – s0| 



So 

+ ∞

∞

−
−

1max| |
max| |

n

n

s s
s s

 = λ 

A reasonable Lipschitz constant for this 
problem is P’(s∞) = 0.8713. 

So each step is only bringing you about 13% 
closer to the truth. 

If we were to use the bisection method to solve 
this problem, based on g(s) = P(s) – s = 0. 

+ ∞

∞

−
−

1max| |
max| |

n

n

s s
s s

 = ½  

So each step is bringing us about half the way 
there. 

After 50 bisection steps (a0 = 0, b0 =1) 

|sn – s∞| ≤ 51

1
2

 = 4.4409e-016 

Functional iteration methods such as these 
aren’t commonly used to directly find roots 
much in statistics from what I’ve seen, but 
other methods, such as Newton-Raphson to 
have a functional iteration property underlying 
them. 



Newton – Raphson 

Probably the most popular root finding method. 

Based on Taylor series approximation 

− − ∞

− ∞

= −
= −

1 1

1
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n n

n

g x g x g x
g z x x

 

where z between xn–1 and x∞.  If we plug xn in 
place of x∞, we get the following updating 
equation 

−
−

−

= − 1
1

1

( )
'( )

n
n n

n

g xx x
g x

 

 

Geometric Interpretation of updating formula 

Finds tangent line to curve at − −1 1( , ( ))n nx g x  

− − −= + −1 1 1( ) ( ) '( )( )n n nl x g x g x x x  

and solves =( ) 0l x  to give xn.  This sequence is 
continued until convergence. 
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Example: Variance Heterogeneity 

µ µ = …2 2~ ( , ); 1, ,i i iY x N x i n  

Since the variance depends on the mean, the y  
will not be the MLE in this case. 

µ
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The Newton scheme for this problem is given by 

µ
µ µ

µ
−

−
−

= − 1
1
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n n

n

l
l

 

As an example, 30 independent observations 
were generated in Matlab from 

2 2~ (10,10 )i i iY x N x  where χ 2
4~iX . 

For a starting point, µ =0 y  = 11.7646, a 
method of moment estimator will be used. 
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As can be seen, the Newton-Raphson scheme 
converges quickly the the MLE µ̂  = 9.8279.  
Note that this is quite a bit lower than y  = 
11.7646 
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Iteration µi µi – µ∞ 

0 11.7646 1.9367 
1.0000 8.4280 -1.3999 
2.0000 9.4024 -0.4255 
3.0000 9.7830 -0.0449 
4.0000 9.8274 -0.0005 
5.0000 9.8279 -0.0000 
6.0000 9.8279 -0.0000 
7.0000 9.8279 0 



Instead of starting at y , lets start at µ0  = 15.1.  
The sequence of iterates quickly diverges. 
 

Iteration µi 
0 15.1000 
1 -24.8822 
2 335.4398 
3 667.3233 

However if we start close by at µ0  = 15, we 
converge to where we want.  Note however that 
we do take a weird path. 
 

Iteration µi 
0 15.0000 
1 -21.4034 
2 9.1677 
3 9.7235 
4 9.8251 
5 9.8279 

In fact, the Newton-Raphson scheme will 
converge to 9.8279 if µ0 ∈ (0, 15.01026).  If  
µ0 > 15.01026, the procedure appears to 
diverge to ∞. 

So the starting point matters.  Lets look at the 
score function µ( )l . 
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So when µ gets around 14 or 15, the function 
gets very flat ( µ'( )l  is close to zero), so the first 
iteration takes the sequence far from the zero. 

In fact when µ is greater than 18, the zero, 
assuming that there is one (probably isn’t), is 
in the other direction from what we want. 

These results can be seen from the updating 
formula 

µ
µ µ

µ
−

−
−

= − 1
1

1

( )
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n
n n

n

l
l

 

 



Convergence of Newton-Raphson 

Note that updating formula is of the functional 
iteration form 

−= 1( )n nx f x  

so we can use the methods earlier to 
investigate the convergence properties of 
Newton – Raphson. 

As seen last time, the convergence depends on 
'( )f x .  For Newton 

= − + =2 2

'( ) ( ) ''( ) ( ) ''( )'( ) 1
'( ) '( ) '( )

g x g x g x g x g xf x
g x g x g x

 

As seen last time, we need –1 < '( )f x  < 1 for the 
sequence to converge to a fixed point.  Notice 
that the above depends of '( )g x , which is the 
derivative of the function we are trying to find a 
root for.  So '( )f x  will not be well behaved 
when '( )g x  too flat, exactly the problem we 
observed when µ0  > 15.01026 in the example. 

However, around the root, '( )g x  is bounded 
away from zero, so the procedure should work 
well. 



The bottom line is that often you need to be 
careful about where you start Newton-Raphson 
and also you need to monitor how it is 
converging (to be addressed later). 

Convergence rates 

Also of interest, is how fast a root finding 
scheme converges to a root. 

As we’ve seen so far, the bisection method and 
functional iteration both have linear 
convergence. 

Procedures that have linear convergence satisfy 

λ→∞
−

=
1

lim n
n

n

e
e

 

where en = xn – x∞.  Assuming that the 
procedure can be written in the form  

−= 1( )n nx f x  

we can look at a Taylor series approximation 

− ∞
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= −
=
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n n

n

e f x f x
f z e

 



where z between xn–1 and x∞.  Provided that 
'( )f z  is continuous and x0 isn’t too far from x∞, 

this implies that 

→∞ ∞
−

=
1

lim '( )n
n

n

e f x
e

 

As we saw last time, if ∞'( )f x  is bounded 
between -1 and 1, this implies that the scheme 
will converge to a fixed point. 

However for Newton-Raphson 

∞ ∞
∞

∞

= 2

( ) ''( )'( )
'( )

g x g xf x
g x

 = 0 

which suggests that it should converge at a 
faster rate.  Note that we have to be a bit 
careful here, as we can get into division by 0 
issues due to '( )g x . 

Let en = xn – x∞ be the current approximation 
error.  Then a Taylor series approximation gives 
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where z between xn – 1 and x∞.  Provided that 
''( )f z  is continuous and x0 isn’t too far from x∞, 

this implies that Newton converges.  In 
addition, this implies that 

→∞ ∞
−

=2
1

1lim ''( )
2

n
n

n

e f x
e

 

Newton-Raphson has what is known as 
quadratic convergence.  In general, a scheme 
converges at order α if 

α λ→∞
−

=
1

lim n
n

n

e
e

 ≠ 0 

Note that α does not need to be an integer.  For 
example, the Illinois scheme converges with 
order 1.442 (Thisted, 1988).  The secant 
method, which is to come, converges at a rate 
between 1 and 2. 

Assessing convergence 

While with the bisection method, you can pre-
specify the number of iterations needed to 
reach a desired level of accuracy, other 
algorithms such as Newton-Raphson, you 
can’t. 



Instead the sequence of −− 1| |n nx x  is 
monitored.  When −− 1| |n nx x  gets small enough 
(say < TOL), the procedure is stopped. 

The choice of TOL depends the level of accuracy 
desired and the magnitude of x∞. 

For example setting TOL = 0.1 when x∞ = 0.001 
is a bit useless.  As an alternative, a stopping 
criteria of the form 

−−
<1| |

TOL
| |
n n

n

x x
x

 

is sometimes used.  You need to be a bit careful 
when xn is around 0 with this relative error 
criterion. 

One other issue when using stopping criteria 
like either of the above is when the procedure 
converges very slowly or diverges.  Usually a 
maximum number of iterations needs to be 
specified. 

The following segment of Matlab code gives the 
basic form for most iterative root finding 
routines. 



 
% Initilize loop variables 

i = 0; 
diff = 2 * TOL;  % guarantees at least one pass 
                 % through loop 
 
while (i < Nmax && diff > TOL)  % Not converged 
  i = i + 1; 
  xold = xnew; 
  xnew = f(xold); 
  diff = abs(xold - xnew); 
end 
 
if (diff > TOL) 
  warning('Method did not converage after Nmax 
steps'); 
end 

In addition, it also useful to examine ( )lastg x , 
the value of the function at the output of the 
root finding routine to make sure that you are 
close enough to the root.  You could have a 
function such at −1( )ng x  is a bit away from zero, 
but − − −− = −1 1 1( )/ '( )n n n ng x g x x x  is close to zero. 



Advantages of Newton-Raphson 

• Fast – quadratic convergence. 

• When used to optimize a function, can also 
get variance of estimate. 
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 The observed information is given by µ∞− '( )l  
and its inverse is a common variance 
estimate for µ∞. 

• Easily extended to multi-parameter 
problems. 

Disadvantages/Problems with Newton-Raphson 

• Doesn’t have to converge.  However 
modifications can be made to avoid non-
convergence problems (e.g. take smaller 
steps). 



• Uses derivatives, which can have a high 
computational burden.  However, in cases 
where derivatives may be difficult to deal 
with, the derivatives can be numerically 
approximated. 

Secant Method 

An approach which uses a numerical 
approximation to the derivative as part of the 
routine.  Uses the idea 
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if xn-2 and xn-1 aren’t too far apart.  This leads to 
the updating formula of 
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Now the secant method has similar properties 
to Newton-Raphson.  One difference is that it 
doesn’t have quadratic convergence, but it is 
still better than linear.  It can be shown that 

+ ∞
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− ∞
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n
n

n n
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You do need to have a reasonable convergence 
criterion for this procedure as if you take the 
algorithm too far, xn-2 = xn-1 (and 

− −=1 2( ) ( )n ng x g x ), so eventually you will get a 
division by 0 problem. 

For the variance heterogeneity example the two 
procedures converge similarly.  Setting µ =0 y  
for both procedures (and µ− = −1 0.1y  for the 
secant procedure) and TOL = 10-6), they both 
converge to the same point µ̂  = 9.8279 with  
Iobs = 0.7627, which gives µVar( ˆ) = 1.3112. 

In addition, 

µ µ−ˆ ˆNR SEC  = -1.1191e-013 

−NR SECI I  = 5.2013e-006 

Newton-Raphson took 6 iterates to converge 
and Secant took 8 iterates. 



The path to convergence is not the same for the 
two algorithms 
 

Iteration Newton Secant 

0 11.7646 11.7646 

1 8.4280 8.5143 

2 9.4024 10.4980 

3 9.7830 10.0452 

4 9.8274 9.7867 

5 9.8279 9.8303 

6 9.8279 9.8279 

 

To see the advantage of quadratic convergence, 
it would take the Bisection algorithm around 
22 iterations to reach the same accuracy (with  
b0 – a0 = 6). 

 


