
Solution of non-linear equations

Finding MLEs, posterior modes (MAP
estimates), minimizing loss functions, etc.

In many cases, this problem reduces to solving
a nonlinear equation as

arg min f(x) or arg max f(x) usually satisfies
f’(x) = 0.

Usually easier to solve f’(x) = 0 than to deal
with f(x) directly.

There are lots of ways to do this. Three
popular approaches are bisection, functional
iteration, and Newton-Raphson.

Bisection (for 1 dimension problems)

Have continuous function g(x) and two values
a0 and b0 such that

g(a0) > 0 and g(b0) < 0 (or vice versa)

a0 b0
0

We know that there exists at least one point, x*
in (a0, b0) such that g(x*) = 0 by the
intermediate value theorem.

Idea: try midpoint of interval

c =
+0 0

2
a b

 & evaluate g(c)

If g(c)g(a0) > 0 set a1 = c, b1 = b0 and continue

 {g(c) and g(a) are both > 0 or both < 0 so
 must be a root between c and b}

If g(c)g(a0) < 0 set a1 = a0, b1 = c and continue

 {g(c) and g(a) are on opposite side so there
 must be a root between a and c}

If g(c) = 0 stop

Continue until the interval width gets small
enough.

a0 b0
0

c

After n steps, the interval width = bn – an

=
−0 0

2n

b a
.

Set *x̂ = +
2

n na b , the midpoint of the last

interval as the estimate of the root x̂ .

Since it’s the midpoint of the last interval, the
maximum error satisfies

| *x̂ - x̂ | ≤ +

−0 0
12n

b a

Example: Linkage Analysis (Rao, 1973, pp 268-
269)

2 gene on a chromosome are separated by a
recombination fraction θ (θ ≤ ½).

This organism can pass 4
possible haplotypes to its
offspring

Haplotype Probability

AB (1 – θ)/2
Ab θ/2
aB θ/2
ab (1 – θ)/2

A

B

a

b

An experiment was performed to estimate θ.
The breeding experiment crossed AB|ab x
AB|ab and recorded the observed phenotypes.

In this experiment, 2 dominate traits were
observed (A dominant to a, B dominate to b).

While there are 16 possible joint haplotypes in
the offspring (4 from father times 4 from
mother), there are only 4 possible phenotypes

Phenotype Probability Counts

AB (3 – 2θ + θ2)/4 125

Ab (2θ – θ2)/4 18

aB (2θ – θ2)/4 20

ab (1 – 2θ + θ2)/4 34

Note that this problem is easier to solve with
the transformation (Lange page 126, problem 7)

λ θ θ θ= − + = −2 21 2 (1)

θ λ= −1

Under this transformation, the probabilities are

Phenotype Probability Counts

AB (2 + λ)/4 125

Ab (1 – λ)/4 18

aB (1 – λ)/4 20

ab λ/4 34

The likelihood and log likelihood functions are

λ λ λ λ+∝ + −125 18 20 34() (2) (1)L

λ λ λ λ= + + − +log () 125 log(2) 38 log(1) 34 logL

which gives the score function

λ λ
λ λ λ λ

= = − +
−

125 38 34() log ()
1

dl L
d

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
-300

-250

-200

-150

-100

-50

0

50

λ

l(λ
)

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68
-25

-20

-15

-10

-5

0

5

10

15

20

25

λ

l(λ
)

The bisection algorithm for l(λ) with a0 = 0.5
and b0 = 0.9 gives λ *ˆ =0.6268 after 20 steps.
The convergence pattern can be seen with

0 2 4 6 8 10 12 14 16 18 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

In
te

rv
al

Iterate

0 2 4 6 8 10 12 14 16 18 20
0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

Iterate

M
id

po
in

t

0 2 4 6 8 10 12 14 16 18 20
-35

-30

-25

-20

-15

-10

-5

0

5

10

Iterate

l(λ
)

11 12 13 14 15 16 17 18 19 20
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Iterate

l(λ
)

Iterate λ l(λ)
1.0000 0.7000 -31.7989
2.0000 0.6000 9.7436
3.0000 0.6500 -9.0939
4.0000 0.6250 0.6857
5.0000 0.6375 -4.1009
6.0000 0.6312 -1.6835
7.0000 0.6281 -0.4931
8.0000 0.6266 0.0977
9.0000 0.6273 -0.1973
10.0000 0.6270 -0.0497
11.0000 0.6268 0.0240
12.0000 0.6269 -0.0128
13.0000 0.6268 0.0056
14.0000 0.6268 -0.0036
15.0000 0.6268 0.0010
16.0000 0.6268 -0.0013
17.0000 0.6268 -0.0002
18.0000 0.6268 0.0004
19.0000 0.6268 0.0001
20.0000 0.6268 -0.0000

For this example,

max error ≤ −
21

0.9 0.5
2

 = 1.9 x 10-7

To get θ *ˆ , use θ λ= −1 , which gives

θ *ˆ = 1 – 0.6268 = 0.2083

Note that the maximum error in with the
estimate θ *ˆ needs to be carefully thought
about, since the transformation is non-linear.

How many iterations for the bisection
algorithm?

Once a0 and b0 are determined its easy. Base
on a maximum desired error

Want +

−0 0
12n

b a
 ≤ M. Then set n to satisfy

−⎛ ⎞≥ −⎜ ⎟
⎝ ⎠

−⎛ ⎞= −⎜ ⎟
⎝ ⎠

0 0
2

0 0

log 1

log /log 2 1

b an
M

b a
M

For example, for M = 0.0001

−⎛ ⎞≥ − =⎜ ⎟
⎝ ⎠

0.9 0.5log /log 2 1 10.9
0.0001

n

so use at least 11 iterates.

Advantages of the bisection method:

• Must terminate

• Guaranteed to find a zero of the function to
desired accuracy

Disadvantages:

• Can only handle univariate problems

• Linear convergence (Other algorithms, such
as Newton-Raphson can be faster)

• From optimization point of view, not
guaranteed to find an optima.

Note that this disadvantage is not really
specific to bisection, but to using root finders
on the derivative of the function to be
optimized.

Solving ='() 0f x may give a minimum or a
saddle point when a maximum is desired.

Need to check ()f x or ''()f x to see if *x̂ is a
local maximum (e.g. is *ˆ''()f x < 0 or is '()f x a
decreasing function around *x̂)

In this case, the log likelihood is definitely
concave, so we have found the MLE

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
40

45

50

55

60

65

70

λ

lo
g

L(
λ)

One thing to note with the bisection algorithm
when used to optimize a likelihood function,
the likelihood (or log likelihood) does not have
to increase at each step, particularly for the
early iterates. However it will tend to do this
once you are in the area of the optima, as can
be seen in the following figure.

1 2 3 4 5 6 7 8 9 10
66.2

66.4

66.6

66.8

67

67.2

67.4

67.6

lo
g

L(
λ)

Iterate

For comparison, the true MLE can be
calculated for the linkage example. As seen
last time

l(λ) =
λ+

125
2

 –
λ−

38
1

 +
λ
34 = 0

which is equivalent to solving

 125(1 – λ)λ – 38(2 + λ)λ + 34(2 + λ)(1 – λ) = 0

 = -197λ2 + 15λ + 68

The two roots of this equation are 0.6268215
and -0.5506794. Only the first one is valid
since λ must be in the range [0.25, 1].

There are other approaches similar to
bisection. One useful one is the method of
False Position (Regula Falsi).

A motivation behind this method is that the
function is approximately linear in the region of
interest.

Join points (ai, g(ai)) and (bi, g(bi)) with a
straight line and find the point where the
straight line intersects with the line y = 0 (call
point pi.

Line: l(x) =
−

+ −
−

1() ()
() ()i

i i
i i

g b g ag a x a
b a

l(x) = 0 ⇒ pi =
−

−
−1

() ()
() ()
i i i

i
i

b a g aa
g b g a

If g(pi)g(ai) > 0 set ai+1 = pi and bi+1 = bi

If g(pi)g(ai) < 0 set ai+1 = ai and bi+1 = pi

For some problems, this approach can be faster
than bisection, but it depends on the shape of
the function and the starting endpoints.

Also its harder to show convergence to the root
since the interval size doesn’t have to go to zero
like with bisection. The can happen with a
convex or concave function.

a0 b0
0

However, this routine will eventually converge
to a root. This can be shown since {ai} is an
non-decreasing sequence bounded above and
{bi} is an non-increasing sequence bounded
below.

 Bisection Regula Falsi

Iterate Lower Upper Lower Upper

0 0.5000 0.9000 0.5000 0.9000

1 0.5000 0.7000 0.5492 0.9000

2 0.6000 0.7000 0.5779 0.9000

3 0.6000 0.6500 0.5955 0.9000

4 0.6250 0.6500 0.6066 0.9000

5 0.6250 0.6375 0.6137 0.9000

6 0.6250 0.6312 0.6183 0.9000

7 0.6250 0.6281 0.6212 0.9000

8 0.6266 0.6281 0.6232 0.9000

9 0.6266 0.6273 0.6244 0.9000

10 0.6266 0.6270 0.6253 0.9000

11 0.6268 0.6270 0.6258 0.9000

12 0.6268 0.6269 0.6262 0.9000

13 0.6268 0.6269 0.6264 0.9000

14 0.6268 0.6268 0.6265 0.9000

15 0.6268 0.6268 0.6266 0.9000

16 0.6268 0.6268 0.6267 0.9000

17 0.6268 0.6268 0.6267 0.9000

18 0.6268 0.6268 0.6268 0.9000

19 0.6268 0.6268 0.6268 0.9000

20 0.6268 0.6268 0.6268 0.9000

0 2 4 6 8 10 12 14 16 18 20
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Iterate

R
oo

t E
st

im
at

e

a0 = 0.5, b0 = 0.9

Bisection
Regula Falsi

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Iterate

|E
rro

r|

a0 = 0.5 b0 = 0.9

Bisection
Regula Falsi

0 2 4 6 8 10 12 14 16 18 20
0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

Iterate

R
oo

t E
st

im
at

e

a0 = 0.6, b0 = 0.75

Bisection
Regula Falsi

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iterate

|E
rro

r|

a0 = 0.6 b0 = 0.75

Bisection
Regula Falsi

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
-300

-250

-200

-150

-100

-50

0

50

λ

l(λ
)

a0 = 0.5, b0 = 0.9

0.6 0.65 0.7

-60

-50

-40

-30

-20

-10

0

10

λ

l(λ
)

a0 = 0.6, b0 = 0.75

Functional Iteration (Fixed Point Approaches)

Instead of solving g(x) = 0, we can investigate
the function

f(x) = g(x) + x

Solving g(x) = 0 is the same as solving f(x) = x.

In many situations, iterates of the sequence
xn = f(xn-1) converge to a root of g(x) starting
from any point x0 nearby.

But it doesn’t have to!

Lets run this algorithm starting at x0 = 0.62
and x0 = 0.63, which are both close to the true
root of 0.6268215.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Iterate

x n

x0 = 0.62

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

100

150

200

250

Iterate

x n

x0 = 0.63

In both cases, the iterates seem to diverge, or
at least don’t seem to converge in the right
region.

Lets look at the function f(x), in particular its
derivative.

0.62 0.622 0.624 0.626 0.628 0.63 0.632 0.634 0.636 0.638 0.64
-395

-390

-385

-380

-375

-370

-365

x

df
(x

)/d
x

Derivative of f(x)

So small changes in x lead to large changes in
f(x), even very close to the fixed point.

So we need conditions on when fixed point
methods can work

Proposition 5.3.1: Suppose f(x) defined on a
closed interval I satisfies the conditions

1) f(x) ∈ I whenever x ∈ I

2) |f(y) – f(x)| ≤ λ|y – x| for any two points x &
y in I.

Then provided the Lipschitz constant λ is in
[0, 1), f(x) has a unique fixed point x∞ ∈ I, and
the functional iterates xn = f(xn-1) converge to x∞
regardless of the starting point x0 ∈ I.
Furthermore, we have the precise error
estimate

|xn – x∞| ≤ λ
λ−1

n

|x1 – x0|

(For proof, see Lange)

So if f(x) (and g(x)) is nice enough, we can be
guaranteed to find the desired root.

Need to get a handle on the Lipschitz constant
λ. Usually you can use an upper bound on
| '()f x |.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Example Lipschitz Function

x

f(x
)

What happened in the linkage example. Well
λ > 360. So for an x near (but not equal to x∞)

|f(x) – x∞| = | '()f z (x – x∞)| (Mean value
theorem)

 ≥ 360 |x – x∞| ≥ |x – x∞|

So there was no way that this approach could
work. This situation is known as repulsive.
You have to end up further from the fixed point
than where you started.

If | ∞'()f x | < 1, the situation is known as
attractive.

If | ∞'()f x | = 1, the situation is indeterminant
and investigation of the function is required.

Example: Extinction Probabilities of Branching
Processes (Section 5.3.2)

Stochastic process that describes a model of
population growth.

Start with 1 particle. This particle has k
offspring with probability pk. Each of these k
particles generates offspring by the same
mechanism. And so on for these offspring.

One question of interest is whether the
population will completely die out.

This question can be answered by investigating
the generating function of the process

P(s) =
∞

=
∑

0

k
k

k
p s

If p0 = 0, the population can never die out, so
we will only consider the case p0 > 0.

It ends up that the probability that the
population will eventually die out satisfies the
fixed point equation

s = P(s)

This equation can have 1 or 2 fixed points. The

point s = 1 must be one as
∞

=
∑

0
k

k
p = 1. It can be

two since P(0) > 0 (we’ll also ignore the case
where p0 = 1) and P(s) is a convex function in
[0,1] since

P’’(s) =
∞

−

=

−∑ 2

2

(1) k
k

k
k k p s > 0

Since its convex, it will intersect a straight line
at most twice. However the second point of
intersection may not be in [0,1] (if it exists).
The function must look like one of the
following.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P(s) = 1 / (2 - s); pk = 2-k-1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P(s) = 0.3 + 0.1s + 0.4s2 + 0.2s3

Which occurs depends on P’(1), the mean
number of offspring for each particle. If
P’(1) ≤ 1, the first situation must happen. The
second situation will occur with If P’(1) > 1.

Note that the extinction probability is the
smaller fixed point when P’(1) > 1. (s = 1 is a
point of repulsion).

When P’(1) > 1, we can find the fixed point by
iterating starting at s0 = 0. This works since
0< P’(s) < 1 and P(s) ≤ s for s ∈ [0, s∞]. Usually
it will be for s ∈ [0, s∞ + δ], where δ > 0.

Lets look at Lotka’s example examining the
extinction of surnames among white male in
the US based on 1920 census data.

P(s) = 0.4982 + 0.2103s + 0.1270s2
 + 0.7330s3 + 0.0418s4 + 0.0241s5
 + 0.0132s6 + 0.0069s7 + 0.0035s8

+ 0.0015s9 + 0.0005s10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Lotka Generating Function

s

P
(s

)

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Lotka Generating Function

s

P
(s

)

The method converges slowly to the extinction
probability of 0.879755.

After 50 steps, we can show that

Bound: |sn – s∞| ≤ λ
λ−1

n

|s1 – s0| = 0.0039

Actual: |sn – s∞| = 0.000105

0 5 10 15 20 25 30 35 40 45 50
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Iteration

E
rro

r

Why is convergence slow?

Error estimate bound

|sn – s∞| ≤ λ
λ−1

n

|s1 – s0|

So

+ ∞

∞

−
−

1max| |
max| |

n

n

s s
s s

 = λ

A reasonable Lipschitz constant for this
problem is P’(s∞) = 0.8713.

So each step is only bringing you about 13%
closer to the truth.

If we were to use the bisection method to solve
this problem, based on g(s) = P(s) – s = 0.

+ ∞

∞

−
−

1max| |
max| |

n

n

s s
s s

 = ½

So each step is bringing us about half the way
there.

After 50 bisection steps (a0 = 0, b0 =1)

|sn – s∞| ≤ 51

1
2

 = 4.4409e-016

Functional iteration methods such as these
aren’t commonly used to directly find roots
much in statistics from what I’ve seen, but
other methods, such as Newton-Raphson to
have a functional iteration property underlying
them.

Newton – Raphson

Probably the most popular root finding method.

Based on Taylor series approximation

− − ∞

− ∞

= −
= −

1 1

1

() () ()
'()()

n n

n

g x g x g x
g z x x

where z between xn–1 and x∞. If we plug xn in
place of x∞, we get the following updating
equation

−
−

−

= − 1
1

1

()
'()

n
n n

n

g xx x
g x

Geometric Interpretation of updating formula

Finds tangent line to curve at − −1 1(, ())n nx g x

− − −= + −1 1 1() () '()()n n nl x g x g x x x

and solves =() 0l x to give xn. This sequence is
continued until convergence.

0.0 0.5 1.0 1.5 2.0

-8
-6

-4
-2

0
2

f(x) = 4 cos(x) - exp(x)

x

f(x
)

Example: Variance Heterogeneity

µ µ = …2 2~ (,); 1, ,i i iY x N x i n

Since the variance depends on the mean, the y
will not be the MLE in this case.

µ
µ

µ µ=

⎛ ⎞⎛ ⎞−
⎜ ⎟∝ − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∏
2

1

1 1() exp
2

n
i

i i i

yL
x x

µ
µ µ

µ=

⎛ ⎞−
= − − +⎜ ⎟

⎝ ⎠
∑

2

1

1log () log ()
2

n
i

i i

yL n c
x

x

µµµ
µ µ µ

µµ
µ

µ
µ µ µ

=

= =

⎛ ⎞−
= = − + ⎜ ⎟

⎝ ⎠

=

⎛ ⎞−
= − −⎜ ⎟

⎝ ⎠

∑

∑ ∑

3
1

2

2

2 4 3 2
1 1

log () 1()

log ()'()

3 1

n
i i

i i i

n n
i i i

i ii i i

y yd L nl
d x x

d Ll
d

y y yn
x x x

The Newton scheme for this problem is given by

µ
µ µ

µ
−

−
−

= − 1
1

1

()
'()

n
n n

n

l
l

As an example, 30 independent observations
were generated in Matlab from

2 2~ (10,10)i i iY x N x where χ 2
4~iX .

For a starting point, µ =0 y = 11.7646, a
method of moment estimator will be used.

0 0.5 1 1.5 2 2.5 3 3.5 4
-30

-20

-10

0

10

20

30

40

50

60

xi

y i

Variance Heterogeneity Example

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

11.5

12

Iteration

µ i

Iterates starting at y-bar

As can be seen, the Newton-Raphson scheme
converges quickly the the MLE µ̂ = 9.8279.
Note that this is quite a bit lower than y =
11.7646

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

| µ
i -

µ ∞
|

Iterates starting at y-bar

Iteration µi µi – µ∞

0 11.7646 1.9367
1.0000 8.4280 -1.3999
2.0000 9.4024 -0.4255
3.0000 9.7830 -0.0449
4.0000 9.8274 -0.0005
5.0000 9.8279 -0.0000
6.0000 9.8279 -0.0000
7.0000 9.8279 0

Instead of starting at y , lets start at µ0 = 15.1.
The sequence of iterates quickly diverges.

Iteration µi
0 15.1000
1 -24.8822
2 335.4398
3 667.3233

However if we start close by at µ0 = 15, we
converge to where we want. Note however that
we do take a weird path.

Iteration µi
0 15.0000
1 -21.4034
2 9.1677
3 9.7235
4 9.8251
5 9.8279

In fact, the Newton-Raphson scheme will
converge to 9.8279 if µ0 ∈ (0, 15.01026). If
µ0 > 15.01026, the procedure appears to
diverge to ∞.

So the starting point matters. Lets look at the
score function µ()l .

8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

µ

l(µ
)

Score function

So when µ gets around 14 or 15, the function
gets very flat (µ'()l is close to zero), so the first
iteration takes the sequence far from the zero.

In fact when µ is greater than 18, the zero,
assuming that there is one (probably isn’t), is
in the other direction from what we want.

These results can be seen from the updating
formula

µ
µ µ

µ
−

−
−

= − 1
1

1

()
'()

n
n n

n

l
l

Convergence of Newton-Raphson

Note that updating formula is of the functional
iteration form

−= 1()n nx f x

so we can use the methods earlier to
investigate the convergence properties of
Newton – Raphson.

As seen last time, the convergence depends on
'()f x . For Newton

= − + =2 2

'() () ''() () ''()'() 1
'() '() '()

g x g x g x g x g xf x
g x g x g x

As seen last time, we need –1 < '()f x < 1 for the
sequence to converge to a fixed point. Notice
that the above depends of '()g x , which is the
derivative of the function we are trying to find a
root for. So '()f x will not be well behaved
when '()g x too flat, exactly the problem we
observed when µ0 > 15.01026 in the example.

However, around the root, '()g x is bounded
away from zero, so the procedure should work
well.

The bottom line is that often you need to be
careful about where you start Newton-Raphson
and also you need to monitor how it is
converging (to be addressed later).

Convergence rates

Also of interest, is how fast a root finding
scheme converges to a root.

As we’ve seen so far, the bisection method and
functional iteration both have linear
convergence.

Procedures that have linear convergence satisfy

λ→∞
−

=
1

lim n
n

n

e
e

where en = xn – x∞. Assuming that the
procedure can be written in the form

−= 1()n nx f x

we can look at a Taylor series approximation

− ∞

−

= −
=

1

1

() ()
'()

n n

n

e f x f x
f z e

where z between xn–1 and x∞. Provided that
'()f z is continuous and x0 isn’t too far from x∞,

this implies that

→∞ ∞
−

=
1

lim '()n
n

n

e f x
e

As we saw last time, if ∞'()f x is bounded
between -1 and 1, this implies that the scheme
will converge to a fixed point.

However for Newton-Raphson

∞ ∞
∞

∞

= 2

() ''()'()
'()

g x g xf x
g x

 = 0

which suggests that it should converge at a
faster rate. Note that we have to be a bit
careful here, as we can get into division by 0
issues due to '()g x .

Let en = xn – x∞ be the current approximation
error. Then a Taylor series approximation gives

− ∞

∞ − −

−

= −

= +

=

1

2
1 1

2
1

() ()
1'() ''()
2

1 ''()
2

n n

n n

n

e f x f x

f x e f z e

f z e

where z between xn – 1 and x∞. Provided that
''()f z is continuous and x0 isn’t too far from x∞,

this implies that Newton converges. In
addition, this implies that

→∞ ∞
−

=2
1

1lim ''()
2

n
n

n

e f x
e

Newton-Raphson has what is known as
quadratic convergence. In general, a scheme
converges at order α if

α λ→∞
−

=
1

lim n
n

n

e
e

 ≠ 0

Note that α does not need to be an integer. For
example, the Illinois scheme converges with
order 1.442 (Thisted, 1988). The secant
method, which is to come, converges at a rate
between 1 and 2.

Assessing convergence

While with the bisection method, you can pre-
specify the number of iterations needed to
reach a desired level of accuracy, other
algorithms such as Newton-Raphson, you
can’t.

Instead the sequence of −− 1| |n nx x is
monitored. When −− 1| |n nx x gets small enough
(say < TOL), the procedure is stopped.

The choice of TOL depends the level of accuracy
desired and the magnitude of x∞.

For example setting TOL = 0.1 when x∞ = 0.001
is a bit useless. As an alternative, a stopping
criteria of the form

−−
<1| |

TOL
| |
n n

n

x x
x

is sometimes used. You need to be a bit careful
when xn is around 0 with this relative error
criterion.

One other issue when using stopping criteria
like either of the above is when the procedure
converges very slowly or diverges. Usually a
maximum number of iterations needs to be
specified.

The following segment of Matlab code gives the
basic form for most iterative root finding
routines.

% Initilize loop variables

i = 0;
diff = 2 * TOL; % guarantees at least one pass
 % through loop

while (i < Nmax && diff > TOL) % Not converged
 i = i + 1;
 xold = xnew;
 xnew = f(xold);
 diff = abs(xold - xnew);
end

if (diff > TOL)
 warning('Method did not converage after Nmax
steps');
end

In addition, it also useful to examine ()lastg x ,
the value of the function at the output of the
root finding routine to make sure that you are
close enough to the root. You could have a
function such at −1()ng x is a bit away from zero,
but − − −− = −1 1 1()/ '()n n n ng x g x x x is close to zero.

Advantages of Newton-Raphson

• Fast – quadratic convergence.

• When used to optimize a function, can also
get variance of estimate.

µµ
µ

µµ
µ

=

=
2

2

log ()()

log ()'()

d Ll
d

d Ll
d

 The observed information is given by µ∞− '()l
and its inverse is a common variance
estimate for µ∞.

• Easily extended to multi-parameter
problems.

Disadvantages/Problems with Newton-Raphson

• Doesn’t have to converge. However
modifications can be made to avoid non-
convergence problems (e.g. take smaller
steps).

• Uses derivatives, which can have a high
computational burden. However, in cases
where derivatives may be difficult to deal
with, the derivatives can be numerically
approximated.

Secant Method

An approach which uses a numerical
approximation to the derivative as part of the
routine. Uses the idea

()− −
−

− −

−
≈

−
2 1

1
2 1

()
'() n n

n
n n

g x g x
g x

x x

if xn-2 and xn-1 aren’t too far apart. This leads to
the updating formula of

()
− − −

−
− −

−
= −

−
1 1 2

1
1 2

()()
()

n n n
n n

n n

g x x x
x x

g x g x

Now the secant method has similar properties
to Newton-Raphson. One difference is that it
doesn’t have quadratic convergence, but it is
still better than linear. It can be shown that

+ ∞
→∞

− ∞

=1

1

''()lim
2 '()

n
n

n n

e g x
e e g x

You do need to have a reasonable convergence
criterion for this procedure as if you take the
algorithm too far, xn-2 = xn-1 (and

− −=1 2() ()n ng x g x), so eventually you will get a
division by 0 problem.

For the variance heterogeneity example the two
procedures converge similarly. Setting µ =0 y
for both procedures (and µ− = −1 0.1y for the
secant procedure) and TOL = 10-6), they both
converge to the same point µ̂ = 9.8279 with
Iobs = 0.7627, which gives µVar(ˆ) = 1.3112.

In addition,

µ µ−ˆ ˆNR SEC = -1.1191e-013

−NR SECI I = 5.2013e-006

Newton-Raphson took 6 iterates to converge
and Secant took 8 iterates.

The path to convergence is not the same for the
two algorithms

Iteration Newton Secant

0 11.7646 11.7646

1 8.4280 8.5143

2 9.4024 10.4980

3 9.7830 10.0452

4 9.8274 9.7867

5 9.8279 9.8303

6 9.8279 9.8279

To see the advantage of quadratic convergence,
it would take the Bisection algorithm around
22 iterations to reach the same accuracy (with
b0 – a0 = 6).

