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Sequential Importance Sampling (SIS) 

AKA Particle Filtering, Sequential Imputation 

(Kong, Liu, Wong, 1994) 

For many problems, sampling directly from the 
target distribution is difficult or impossible. 

One reason possible reason for this is the size 
of the space that needs to be drawn from 

Examples: 

1) Linkage Analysis (Irwin, Cox, & Kong, 1994) 

 
• m = 41 members 

• n = 27 (nonfounders), f = 14 (founders) 

• 8 markers from chromosome 19 
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• #alleles ranges from 6 to 8 

• 14 members in top 2 generation have no 
marker data 

Want to sample joint haplotypes for all pedigree 
members conditional on the observed marker 
and disease data 

Assume that marker j has jn  possible alleles 
and the disease locus has two alleles. 

Then the number of possible haplotypes for 
each person is 

24 jh n= ∏  

and the maximum number of joint haplotypes 
possible is 

mH h=  

If jn  = 8 for all markers, h = 151.1259 10×  and 
H = 6171.29268 10× . 

Note that not all possible joint haplotypes 
included in H have positive probability since 
they won’t be consistent with Mendelian 
segregration. 
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In addition the observed data will also reduce 
the number of possible haplotypes with positive 
probability. 

2) Target tracking (Irwin, Cressie, & 
Johannesson, 2002) 

Movement Model: 

Position: 
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where ,x tδ  and ,y tδ  are the average accelerations 
in the x and y directions from time t – 1 to time 
t. 
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This gives 
1

1 , 1 ,2

1
1 , 1 ,2

t t x t x t

t t y t x t
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δ

δ
− −

− −

= + +

= + +
 

 

This can be written in matrix format 

1t t tX GX Hδ−= +  

where 

, ,
T
t t t x t y tX x y v v⎡ ⎤= ⎣ ⎦ 

, ,
T
t x t x tδ δ δ⎡ ⎤= ⎣ ⎦  

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

; 

0.5 0
0 0.5
1 0
0 1

H

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

Assume that the model for the average 
accelerations is 

( )2~ 0,t tNδ Λ  
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Measurement model: 

Two radars track the targets position with error 

t t tZ FX ε= + ; ( )~ 0,t tNε Σ  

where 

1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0

F

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

The probability structure can be described by 
the following graph 

 

X0 X1 X2 X3 

Z1 Z2 Z3 
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The model is an example of the hidden Markov 
model.  The state variables tX  are described by 
a continuous state Markov Chain but are 
unobserved (hidden).  All that is observed are 
the tZ , the observed target positions 

Problem: 

Want to know the distribution of 1:t tX Z  for 
each t ( { }1: 1, ,t tZ Z Z= … ). 

 

Since this is a linear dynamic model, it can 
easily be solved by the Kalman filter (KF) 
(Kalman, 1960). 

In this case, 1:t tX Z  is Gaussian and the means 
and variances can be determined by the 
following simple update formulas. 

 

1:t t tE X Zµ ⎡ ⎤= ⎣ ⎦ ; 1: 11 t tt t E X Zµ −− ⎡ ⎤= ⎣ ⎦  

( )1:Vart t tP X Z= ; ( )1: 11 Var t tt tP X Z −− =  
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Assuming [ ]tE δ  = [ ]tE ε  = 0, the KF 
calculations are 

 

( )

11

1

1

1 1

1 1

1 1

tt t

T T
t tt t

T T
t tt t t t

t t tt t t t

t t tt t t t

G
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K Z F
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=
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where tK  is known as the Kalman gain. 

Note that the Kalman filter calculations here 
reduce to Normal conditional distribution 
calculations.  For example 

( )( ) 1
Cov( , ) Vart t t tK X Z Z

−
= , 

exactly what you need to calculate for a 
multivariate regression of tZ  on tX . 

tP  reduces to a standard conditional variance 
calculation. 
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The above data was generated under the model 
described above with 

[ ]0 0 0 1 1 TX =  

0.003 0
0 0.003t

⎡ ⎤
Λ = ⎢ ⎥

⎣ ⎦
; 0.5 0.0548 0

0 0.0548t
⎡ ⎤

Λ = ⎢ ⎥
⎣ ⎦

 

and 

0.03 0 0 0
0 0.03 0 0
0 0 0.04 0.008
0 0 0.008 0.004

t

⎡ ⎤
⎢ ⎥
⎢ ⎥Σ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

However if the movement or measurement 
models are non linear or contain non-normal 
random components, and the Kalman filter or 
its modifications, such as the Extended 
Kalman filter (EKF) can give poor answers. 

The EKF linearizes the system through Taylor 
series approximations and then runs the 
standard Kalman filter on this linear system. 
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An example with a nonlinear component is 
given with the movement model 

1 ,

1 ,

1 1
1

1 1
1
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In this setting, simulating realizations of tX  will 
give a better approximation to 1:t t tE X Zµ ⎡ ⎤= ⎣ ⎦  
and ( )1:Vart t tP X Z= , (or any other functional of 

tX ). 

In this case the distribution of tX  can be 
extremely difficult to deal with directly, but is 
fairly easy to deal with conditional of the earlier 
parts of the path (drawing tX  given 1tX −  and tZ  
is tractable) 

For both examples (linkage analysis and target 
tracking), sequential importance sampling is a 
useful technique for sampling from the desired 
posterior distributions. 



11 

Let { }1 2, , , kX X X X= …  be some decomposition 
of the random variable you wish to sample from 
and { }1 2, , , kY Y Y Y= …  be the corresponding 
decomposition of the data you wish to 
condition on. 

Want to sample from 

( ) ( ) ( )
( )

p X p Y X
p X Y

p Y
=  

which is assumed to be difficult to do. 

Want to find a distribution ( )q X Y  that is easy 
to sample from and use importance sampling. 

SIS 

1) Sample ( )1 1 1 1~X q X Y  and calculate 

( ) ( )
( )

1 1
1 1

1 1 1

p X Y
w X

q X Y
=  

2) Then for j = 2, … , k 

 Sample ( )1: 1: 1~ ,j j j j jX q X Y X −  and calculate 
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( ) ( )
( )

( ) ( )

1: 1 1: 1

1: 1:

1: 1: 1 1: 1 1: 1,

j j j j

j j

j j j j j j

w X w X

p X Y

q X Y X p X Y

− −

− − −

=

×
 

The factor  

( )
( ) ( )

1: 1:

1: 1: 1 1: 1 1: 1,

j j

j j j j j j

p X Y

q X Y X p X Y− − −

 

is often easy to calculate. 

The resulting sample 1:kX X=  is a weighted 
sample from ( )p X Y  with unnormalized 
importance sampling weight 

( ) ( )
( )

1: 1:
1:

1: 1:

k k
k k

k k

p X Y
w X

q X Y
=  

where 

( ) ( ) ( )1: 1: 1 1 1 1: 1: 1
2

,
k

k k j j j j
j

q X Y q X Y q X Y X −
=

= ∏  

The components of the proposal need to be 
chosen so that that they are easy to sample 
from. 
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Two popular choices are 

( ) ( )*
1: 1: 1 1: 1: 1, ,j j j j j j jq X Y X p X Y X− −=  

and 

( ) ( )'
1: 1: 1 1: 1,j j j j j jq X Y X p X X− −=  

The first choice is optimal in that is minimizes 
the variance of the importance sampling 
weights (which will increase the ESS). 

The second choice is often easy, such as with 
the target tracking example.  However by 
ignoring the data, it can significantly increase 
the importance sampling weight variance. 

 

Optimal proposal properties 

For the optimal proposal 

( ) ( ) ( )1: 1 1: 1 1: 1
2

,
k

k j j j
j

w X p Y p Y Y X− −
=

= ∏  

which implies (Kong et al, 1994, Irwin et al, 
1994) 



14 

( ) ( ) ( )
( )

1: 1: 1:*
1: 1:

1:

k k k
k k

k

p Y p X Y
q X Y

w X
=  

or 

( )
( ) ( )

( )
1: 1: 1:

1: *
1: 1:

k k k
k

k k

p Y p X Y
w X

q X Y
=  

so 

( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )
( )

*
1: 1: 1: 1:

1: 1: 1:
1:

1:

1: 1: 1: 1:

1:

q k k k k

k k k
k

k

k k k k

k

E w X w X q X Y dX

p Y p X Y
w X dX

w X

p Y p X Y dX

p Y

⎡ ⎤ =⎣ ⎦

=

=

=

∫

∫

∫
 

Thus the likelihood of the data can be 
estimated with the average of the unnormalized 
importance sampling weights. 
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Implementing SIS for the target tracking 
example. 

Since the movement is described by a Markov 
chain and the observations are assumed to be 
independent 

( ) ( )
( )
( ) ( )

*
1: 1: 1 1: 1: 1

1

1

, ,

,

j j j j j j j

j j j

j j j j

q X Y X p X Y X

p X Y X

p X X p Y X

− −

−

−

=

=

∝

 

So the optimal proposal is tractable here. 

In fact, ( )1, ~ ,j j j j jX X Y N θ− Γ  where 

( ) ( )

( )

1

1

1

1

j j

T T T T
j j j j j

T
j j

T T T T T
j j j j

GX

H H F FH H F Y FGX

H H

H H F FH H F FH H

θ −

−

−

−

=

+ Λ Σ + Λ −

Γ = Λ

− Λ Σ + Λ Λ
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In addition, the multiplier for the weight is 

( ) ( )1: 1 1: 1 1,j j j j jp Y Y X p Y X− − −=  

which is the density of a 
( )1,

T T
j j jN FGX FH H F− Σ + Λ  random variable. 
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One potential problem with SIS is that the 
variance of the importance sampling weights 
increases over time, which implies that ESS 
decreases as the sampler proceeds. 

Thus the estimates of the mean are less 
precise, the further into the sampler we go. 

Solution: Resampling. 
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Target tracking example. 

Step j (j = 1, … , k): 

)i  Sample ( )1, ~ ,j j j j jX X Y N θ− Γ  where 

( ) ( )

( )

1

1

1

1

j j

T T T T
j j j j j

T
j j

T T T T T
j j j j

GX

H H F FH H F Y FGX

H H

H H F FH H F FH H

θ −

−

−

−

=

+ Λ Σ + Λ −

Γ = Λ

− Λ Σ + Λ Λ

 

This is gotten by plugging the appropriate 
matrices into 

( ) ( ) ( )
( )

( ) ( ) ( )

1

1

1 1 1

1

1

1 1 1

Cov , Var

Var

Cov , Var Cov ,

j j j

j j j j j j j j

j j j

j j j j j j j j

E X X

X Y X Y X Y E Y X

X X

X Y X Y X Y X X

θ −

−

− − −

−

−

− − −

=

+ −

Γ =

−

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦
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)ii  Update the weight 

( ) ( ) ( )1: 1 1: 1 1j j j j j jw X w X p Y X− − −=  

since 

( ) ( )1: 1 1: 1 1,j j j j jp Y Y X p Y X− − −=  

( )1j jp Y X −  is a normal density with 

( )
1 1

1Var Var

j j j j

T T
j j j j j

FGX E Y X

FH H F Y X

µ − −

−

⎡ ⎤= = ⎣ ⎦

= Σ + Λ =
 

 

What to do with more complicated models, 
such as 

1 ,

1 ,

1 1
1

1 1
1

log log

cos cos
2

sin sin
2

t t s t

t t t

t t t t
t t

t t t t
t t

s s

s sx x

s sy y

θ

δ
θ θ δ

θ θ

θ θ

−

−

− −
−

− −
−

= +

= +

+
= +

+
= +
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The optimal proposal distribution still has the 
form 

( ) ( )
( )
( ) ( )

*
1: 1: 1 1: 1: 1

1

1

, ,

,

j j j j j j j

j j j

j j j j

q X Y X p X Y X

p X Y X

p X X p Y X

− −

−

−

=

=

∝

 

However ( )1j jp X X −  is no longer normal, 
though it is based on normal, assuming the 
random changes in speed and direction are 
normal. 

One approach is to approximate it with a 
normal matching the mean and variance 
(approximately).  Then the combination of the 
two pieces is approximately normal. 

The normal approximation may be determined 
by 

• Taylor series approximation (Delta rule) 

• Numerical quadrature (Scaled unscented 
transformation) 

• ??? 
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For the nonlinear model above, it can also be 
dealt with by setting the state vector to 

[ ]* logt t tX S θ=  and having the measurement 
model for tZ  depend on * *

1 , , tX X…  in a nonlinear 
fashion. 

The models are exactly the same, just 
parametrized differently.  However the different 
parametrizations lead to a different normal 
approximations, and in fact for this example 
the nonlinear measurement model works better 
(lower CV for the importance sampling weights 
and smaller standard errors for the filtered 
target locations. 

 

Data decompositions 

{ }1, , kX X X= …  and { }1, , kY Y Y= …  

Efficiency of SIS depends on how this 
decomposition is made. 

In some problems there may be many ways of 
doing this decomposition. 
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For the target tracking example there isn’t.  The 
only decomposition that makes sense is to 
match it with time.  (Physical constraints of 
data collection force this.) 

Here are a couple where it does make a 
difference 

Example 1: Multivariate normal data with 
missing values (Kong et al, 1994) 

Bayesian analysis using the Jeffreys’ 
noninformative prior. 

269 observations of a 6 component vector 

88 observation complete 

181 observations had at least 1 component 
missing with some missing up to 4 
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They performed simulation in the order given 
above 

1) complete data 

2) 1 component missing 

3) 2 components missing 

etc 

Another approach would be to deal with the 
data in the data collection order (which 
probably was random) 

The importance sampling weights in this 
second approach will be more variable and 
thus more imputations will be needed to reach 
the same precision. 

Note that in the analysis in this paper, it was 
based on simulated data.  However it was 
based on the structure of a real data set from 
the social sciences. 

One potential problem with SIS is that the 
variance of the importance sampling weights 
increases over time, which implies that ESS 
decreases as the sampler proceeds. 
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Example 2: Linkage Analysis 

Similar to the example presented last time, but 
on a different data set (Irwin et al, 1994) 

Want to estimate the disease location of a 
putative gene for a form of diabetes located on 
20q with 8 markers. 

Two approaches: 

1) Process all marker data first then the 
disease data 

2) Process marker RM292 first, then the 
disease data, then the other 7 markers 

In both approaches the disease was processed 
in the middle of the marker interval of interest 
and the likelihood for other points in the 
interval were determined by reweighting the 
sample 
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CEPH Distances: 
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MCEM Distances 
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In all cases processing the disease early gave 
more precise estimates, in some cases by a 
factor over 30. 

When possible, you want include as much 
information in 1Y . 

Want to sample with trial distribution based on 

( ) ( ) ( )
( )

1 2 1

1: 1

,

,k k

p X Y p X Y p X X Y

p X X Y−

= ×

×

…
 

instead of  

( ) ( ) ( )
( )

1 2 1 1:21

1: 1 1:

,

,k k k

q X Y q X Y q X X Y

q X X Y−

= ×

×

…
 

The first case will have importance sampling 
weights = 1 (assuming that you don’t need to 
use importance sampling for any of the 
components ( )1: 1,j jp X X Y− ). 

 

Thus careful thought can help alleviate the 
problem I talked about last time, the increasing 
variance of the importance sampling weights as 
the sampler progresses. 
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For example, suppose you have a process that 
you want to model with the following 
hierarchical structure 

Process level 1: [ ]Y  

Process level 2: X Y⎡ ⎤⎣ ⎦  

Data: , ,x y x yZ Z X Y Z X Z Y⎡ ⎤ ⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦ ⎣ ⎦  

Want to sample X and Y from , ,x yX Y Z Z⎡ ⎤⎣ ⎦ .  
One possible scheme is to use the following SIS 
scheme 

1) Sample X from xX Z⎡ ⎤⎣ ⎦  by SIS giving 
weights ( )xw X . 

2) Sample Y from , ,x yY X Z Z⎡ ⎤⎣ ⎦ .  Given the 
probability structure above 

, , ,x y yY X Z Z Y X Z⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  

 If it is possible to sample directly from 
, yY X Z⎡ ⎤⎣ ⎦ , 

( ) ( ), ,x y xw X Y w X=  
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 i.e. the simulation of Y in this case won’t 
increase the variance of the importance 
sampling weights. 

 I have been able to do this with some 
genetics example, where X are the 
haplotypes, and Y is the inheritance vector. 

However this idea won’t work in the target 
tracking example. 

 

Lets look at how the normalized importance 
sampling weights can evolve over time in the 
target tracking example. 
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One way to think about importance sampling 
weights is in terms of how many samples would 
you expect to see if you sampled from the 
target distribution instead of the trial 
distribution you actually sampled from (if 
weights normalize to have mean 1). 

So if ( )w X  = 2, you would expect to see about 
twice as many copies of X if you sampled 
directly from the target distribution. 

( )w X  = 0.5 implies you would expect half as 
many 

 

 
(From: van der Merwe et al, 2000, The Unscented Particle Filter) 
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Resampling: 

Sample realizations from the set { }1
1: 1:, , n

j jX X…  
with probabilities proportional to the weights 

( ) ( )1
1: 1:, , n

j jw X w X… . 

Treat this new sample as an equally weighted 
from the target distribution. 

Sequential Imputation with Resampling 

For i = 1, … , n 

1) Sample ( )1: 1: 1~ ,i i
j j j j jX q X Y X −  

2) Update weight 

( ) ( )
( )

( ) ( )

1: 1 1: 1

1: 1:

1: 1: 1 1: 1 1: 1,

i i
j j j j

i
j j

i i i
j j j j j j

w X w X

p X Y

q X Y X p X Y

− −

− − −

=

×
 

3) If appropriate, resample n realizations 
from{ }1

1: 1:, , n
j jX X…  with probabilities 

proportional to ( ) ( )1
1: 1:, , n

j jw X w X… . 

 Reset weights ( )1:
1i

j jw X
n

=  
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Note that the resampling step does not have to 
be done through each pass.  Two approaches 
are 

1) resample every m times through (j = m, 2m, 
…) 

2) monitor the weights and resample when the 
behaviour starts to get poor (e.g. when CV > 
C) 
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With resampling some realizations will get 
replicated and some will drop out. 

There are a number of ways of doing the 
sampling. 

Let 

( ) ( )
( )

i
i

j

w X
w X

w X
=
∑

�  

be the normalized weights 

 

1) Multinomial sampling (Gordon, 1994) 

 Sample 

( ){ }( )1, , ~ Multi , j
nl l n w X�…  

where jl  is the number of copies of jX  in 
the new sample 
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This is equivalent to 

Draw ( )~ Unif 0,1iU , i = 1, … , n 

 Set i jX X=�  if 

( ) ( )
1

1 1

j j
l l

i
l l

w X U w X
−

= =

≤ <∑ ∑� �  

 
2) Residual sampling (Higuchi (1997), Liu and 

Chen (1998)) 
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3) Minimum variance sampling (Kitagawa 
(1996), Crisan (2001)) 

 Sample ( )1
1 n~ Unif 0,U  

 Let 1
1

j
jU U
n
−

= +  for j = 2, … , n 

1
j

j jU
n n
−

≤ <  

 Set i jX X=�  if 

( ) ( )
1

1 1

j j
l l

i
l l

w X U w X
−

= =

≤ <∑ ∑� �  

 This procedure has the property that jX  
will occur either ( )jnw X⎢ ⎥

⎣ ⎦�  or ( ) 1jnw X⎢ ⎥ +⎣ ⎦�  

times in the new sample. 

 This implies that samples with high weights 
must be included in the new sample and 
that lowly weighted samples can’t get in 
very often. 

 This will minimize the variances on { }jl  

 


