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ABSTRACT

Tropical Pacific sea surface temperatures (SSTs) and the accompanying El Niño–Southern Oscillation phe-
nomenon are recognized as significant components of climate behavior. The atmospheric and oceanic processes
involved display highly complicated variability over both space and time. Researchers have applied both phys-
ically derived modeling and statistical approaches to develop long-lead predictions of tropical Pacific SSTs. The
comparative successes of these two approaches are a subject of substantial inquiry and some controversy.
Presented in this article is a new procedure for long-lead forecasting of tropical Pacific SST fields that expresses
qualitative aspects of scientific paradigms for SST dynamics in a statistical manner. Through this combining of
substantial physical understanding and statistical modeling and learning, this procedure acquires considerable
predictive skill. Specifically, a Markov model, applied to a low-order (empirical orthogonal function–based)
dynamical system of tropical Pacific SST, with stochastic regime transition, is considered. The approach accounts
explicitly for uncertainty in the formulation of the model, which leads to realistic error bounds on forecasts.
The methodology that makes this possible is hierarchical Bayesian dynamical modeling.

1. Introduction

The interannual variation of tropical Pacific sea sur-
face temperature (SST) is an important factor in the
variability of the global climate system. The dominant
feature of this field is the episodic warming and cooling
of ocean waters with periods of approximately 3–5 yr,
namely, the El Niño–Southern Oscillation (ENSO) phe-
nomenon. In recent years, long-lead predictions of trop-
ical Pacific SSTs have improved greatly in light of better
observational networks, analysis schemes, and under-
standing of the processes that govern the interaction of
the atmosphere and ocean. Although statistical methods
for SST prediction have performed as well as or better
than deterministic, physically derived dynamical meth-
ods (Barnston et al. 1999), there is a common perception
in the climate community that much of the potential of
statistical models has been exhausted. Of course, such
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suggestions refer to a collection of particular forms of
statistical models, some of which are reviewed in section
3. Our intention in this article is to introduce alternative,
Bayesian statistical formulations and prediction proce-
dures that express a variety of qualitative notions and
principles present in the literature regarding SSTs and
their evolution. The Bayesian approach also allows for
the quantification of uncertainty related to our physical
understanding and for its stochastic representation.

Our model is ‘‘statistical’’ in that, although it is guid-
ed by a qualitative expression of the physics, no formal
physical model is included. This is not a limitation of
the Bayesian approach. See Royle et al. (1998) and Wi-
kle et al. (1999, manuscript submitted to J. Amer. Stat.
Assoc.) for examples of Bayesian analyses relying on
physical models. Indeed, the Bayesian statistical view
does not recognize a strict dichotomy between statistical
and deterministic approaches. Though beyond the scope
of this article, the Bayesian viewpoint offers opportu-
nities to incorporate deterministic models into statistical,
long-lead SST forecasting in a fashion that accounts for
a variety of uncertainties. Furthermore, Bayesian pre-
diction results and associated uncertainties are efficient
inputs to decision making and forecasting impacts of
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SST behavior. (See Berger 1985 and Bernardo and
Smith 1994 for general discussion.)

Many of the long-lead statistical prediction schemes
for SSTs that have been used to date have focused on
relatively simple linear models (Barnston et al. 1999).
The statistical sciences have undergone a dramatic
change in recent years as computationally based non-
linear methodologies have been developed and applied
in complex settings. In particular, the hierarchical
Bayesian statistical paradigm has benefited from this
revolution. The tropical Pacific SST prediction problem
provides an exceptional context in which to demonstrate
the long-lead predictive power of, and associated quan-
tification of uncertainties possible with, hierarchical
Bayesian dynamical modeling.

Our suggestion to use the Bayesian approach in sta-
tistical modeling and prediction is not new for the cli-
mate sciences (e.g., Epstein 1985; Tarantola 1987). Also
see Hasselmann (1998), Leroy (1998), and Berliner et
al. (2000) for applications of Bayesian analysis in cli-
mate change studies. Indeed, many familiar statistical
procedures actually are Bayesian procedures, or nearly
so. Examples include optimal interpolation or kriging
(e.g., Kitanidis 1986; Omre 1987; Cressie 1993, section
3.4.4), and some data assimilation procedures such as
Kalman filtering (e.g., Meinhold and Singpurwalla
1983; Lorenc 1986; Courtier 1997). It is our intention
in this article to establish a more general Bayesian sta-
tistical paradigm that we believe will enrich statistical
practice in the climate sciences.

To illustrate the Bayesian approach and some of the
flexibility associated with it, we develop a Bayesian
space–time model for forecasting monthly tropical Pa-
cific SSTs at a 7-month lead time. This lead time was
chosen to demonstrate how the methodology could be
applied to produce operational forecasts at least 6
months in advance, with the consideration that time is
required to acquire new data for the new forecast. The
methodology can be readily adapted to different lead
times. Keys to the model include incorporation of the
following features.

R For each time (month) we consider a spectral model
for the data, focusing on a reduced empirical orthog-
onal function (EOF) basis set.

R We assume that the spectral coefficients of the model
are stochastic and time-varying. That is, they are as-
sumed to follow a multivariate time series model.

R The parameters of that time series model are them-
selves time-varying, yielding a methodology that is
inherently nonlinear. Models, reflecting warm, cold,
and normal regimes, are considered.

R Prognostic variables that indicate possible future tran-
sitions among regimes are modeled as random, with
probabilities that depend upon the behavior of surface-
wind anomalies in the western Pacific, which is a
qualitative expression of physical processes associ-
ated with tropical Pacific SSTs.

We include uncertainties in the development of the mod-
el and present SST predictions in light of this uncer-
tainty.

Section 2 gives a brief discussion of Bayesian analysis
in science. General notions related to stochastic mod-
eling of SST anomalies are presented in section 3. The
Bayesian model for SSTs is described in section 4. The
presentation focuses on our statistical modeling rather
than the mathematics of Bayesian formalism and com-
putation. Some of the more technical aspects of the mod-
el are described in the appendix. Prediction results are
given in section 5 and a brief discussion concludes the
paper in section 6.

2. Bayesian analysis

a. Basic notions

Our presentation is brief and pragmatic. For more
extensive discussion, see Bernardo and Smith (1994)
and Berger (1985). For discussions targeted to the cli-
mate sciences, see Epstein (1985), Berliner et al. (1998),
and Wikle et al. (1998, 1999, manuscript submitted to
J. Amer. Stat. Assoc.).

One way to explain the Bayesian viewpoint is to pre-
sent the approach as a natural solution to prediction
problems: the goal is to produce a probability distri-
bution for future values of some process conditional on
past observational data and our knowledge of the pro-
cess. Implicit in this view is a strong reliance on sta-
tistical modeling and probability calculus. While prob-
ability calculus provides mechanisms for computation,
the basis of the Bayesian statistical approach is that all
unknown quantities of interest are modeled as random
variables. That is, probability models are used to rep-
resent and quantify uncertainty, even regarding un-
known constants or deterministic quantities.

Let Z represent observable data and Y represent un-
known quantities. We first formulate a statistical prob-
ability model p(z | y) for the data; this is the conditional
distribution of Z given Y. Note that this step is common
to both traditional and Bayesian formulations. Next, we
formulate a prior (to observing the data) probability
distribution for Y, denoted by p(y). The key to Bayesian
learning-from-data is Bayes’ theorem, which provides
a formula for computing the conditional probability dis-
tribution of unknowns given the observed data. Specif-
ically, the posterior (after observing that Z 5 z) distri-
bution for Y is given by

p(y | z) } p(z | y)p(y), (1)

where } denotes ‘‘is proportional to.’’ The proportion-
ality constant in this formula is the constant (function
of z, but not y) that ensures that p(y | z) integrates to 1.

Bayesian inference relies on the posterior distribution
obtained in (1). Typically, selected summaries (e.g., per-
centiles, means, and variances) of the posterior are re-
ported. This is especially necessary when the target of
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our inference, Y, is very high-dimensional, as in the
SST problem.

b. Hierarchical models

From (1), we can develop highly complex, space–
time dynamic models based on various results from
probability theory (e.g., Wikle et al. 1998; Wikle and
Cressie 1999). A particularly valuable modeling strategy
is the hierarchical framework. In this approach, a com-
plete joint probability model [the right-hand side of (1)]
for all data and unknowns is written as the product of
a series of conditional models. The probability theory
is easy to describe. Suppose that instead of a single
variable Y in (1), we wish to model three random var-
iables: Y1, Y2, and Y3. Their joint prior probability dis-
tribution, denoted by p(y1, y2, y3), may be complicated
and difficult to formulate directly. However, probability
theory says that the joint prior can be written as a prod-
uct:

p(y1, y2, y3) 5 p1 | 2,3(y1 | y2, y3)p2| 3(y2 | y3)p3(y3),

(2)

where, for example, p1 | 2,3 is a conditional density for
Y1, given Y2 and Y3. (Analogous expressions exist for
an arbitrary number of variables.) The essence of this
method is that specification of the components of the
product in (2) may be simpler and more readily guided
by our science and experience, compared to the direct
formulation of the joint prior.

The essence of hierarchical thinking in the context of
space–time processes is contained in the following rep-
resentation. First, we envision three basic collections of
variables to be modeled:

R data: our observations,
R process: those physical, state variables of interest, and
R parameters: unknown physical constants and param-

eters introduced in the statistical components of the
model.

To correspond to these three collections of variables,
hierarchical thinking suggests a model with three pri-
mary components (e.g., Berliner 1996):

R data model: p(data | process, parameters),
R prior process model: p(process | parameters), and
R prior on parameters: p(parameters).

As indicated in (2), the product of these three compo-
nents is a joint probability distribution. Once the mod-
eling process is completed, Bayes’ theorem yields the
posterior distribution, say p(process, parameters | data).
The distribution, p(data | process, parameters), is typi-
cally a measurement error model. Formulation of this
component is usually critical in both Bayesian and non-
Bayesian statistical approaches. Formulations of
p(process | parameters) and p(parameters) are corner-
stones of the Bayesian approach. Here, the modeler uses
scientific knowledge of the process whenever possible.

Uncertainties in one’s knowledge are quantified prob-
abilistically.

Of course, construction of the component models
above may be challenging. However, substantial flexi-
bility in modeling is achieved, particularly in very high
dimensions. Often, the component models are quite sim-
ple, but simplicity in the components does not mean
that the final model is simple. Indeed, the models that
arise can capture very complex, nonlinear, nonstationary
space–time structure.

A second issue arising in the use of Bayesian hier-
archical models is that historically they have been too
complicated to implement (i.e., to compute the poste-
rior) without major simplification. However, large-scale
hierarchical modeling has recently become operation-
ally feasible due to the popularization of numerically
intensive simulation approaches, such as Markov chain
Monte Carlo (MCMC); see, for example, Gilks et al.
(1996). Recent examples related to atmospheric science,
where MCMC was used, include Royle et al. (1998)
and Wikle et al. (1998; 1999, manuscript submitted to
J. Amer. Stat. Assoc.).

3. Pacific SSTs and ENSO

The primary dataset is a compilation of monthly av-
eraged SST analysis fields obtained from the Interna-
tional Research Institute for Climate Prediction, La-
mont-Doherty Earth Observatory data library Web site
(http://ingrid.ldeo.columbia.edu/SOURCES/.CAC/
.sst/). Specifically, we used the Climate Analysis Center
(CAC) monthly SST anomalies over the tropical Pacific
region 298S–298N latitude and 1248E–708W longitude,
at a 28 3 28 spatial resolution for the period January
1970–July 1999. This dataset combines the 28 3 28
CAC dataset from January 1970 through October 1981
with a regridded (28 3 28) version of the current 18 3
18 interpolation product offered by the Climate Predition
Center for the period November 1981–July 1999.
Anomalies were based on the climatology from the pe-
riod January 1970–December 1985. Let Z t be an m-
dimensional vector denoting the vectorized spatial field
anomaly at m 5 2261 oceanic locations for month t;
t 5 1, . . . , T, where T 5 343.

We will also make use of zonal wind components at
a height of 10 m above the surface. Specifically, we
considered zonal wind anomalies from the National
Centers for Environmental Prediction–National Center
for Atmospheric Research reanalysis dataset (Kálnay et
al. 1996). The data were regridded to the same spatial
domain as described for the SST dataset. Similarly, the
temporal coverage and anomaly period for the wind data
is the same as that for the SST dataset described above.

a. Markovian modeling

Many authors have provided evidence that ENSO can
be considered as a system forced by relatively high-
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frequency atmospheric transients (e.g., Lau 1985; Lau
and Chan 1986, 1988; Vallis 1988; Zebiak 1989; Klee-
man and Moore 1997; Blanke et al. 1997; Eckert and
Latif 1997; Moore and Kleeman 1999). In particular,
Penland and Magorian (1993), Penland and Sardesh-
mukh (1995), and Penland (1996) make a strong case
that the projection of tropical Pacific SST anomalies
onto their leading EOFs can be modeled reasonably as
a first-order Markov process with Gaussian spatial noise.
The justification for this linear model is that since the
nonlinear processes and forcing associated with SST
have much shorter timescales than the SST evolution
we are interested in, the nonlinear terms can be absorbed
into the spatial noise term. Penland and collaborators
also demonstrated that moderately successful SST
anomaly forecasts are possible with this Markovian ap-
proach. However, as is often the case with climatological
implementation of such stochastic methods, estimation
issues have only rarely been considered in the climate
literature, and little attempt has been made to quantify
all sources of uncertainty. The hierarchical Bayesian
approach presented here addresses some of these issues.
Furthermore, as stated previously, it also allows for the
inclusion of time-varying dynamics, through an inho-
mogeneous Markovian process model.

The general idea for forecasting Pacific SST anom-
alies using these notions is via stochastic evolution mod-
els of the form

At1t 5 HAt 1 ht1t , (3)

where A t [ ( , . . . , )9 is the vector of length K,(1) (K)A At t

that results from projecting the SST anomalies onto the
first K EOFs (i.e., Zt ø FAt, where F is the m 3 K
EOF matrix), H is a K 3 K propagator matrix of re-
gression parameters, and h t1t is a K vector of innova-
tions. For the results presented here, we choose K 5
10; the first 10 EOFs explain approximately 74% of the
variance in the SST anomalies in our dataset. The in-
novation vectors {h t} are assumed to be mutually un-
correlated over time and typically are specified to have
Gaussian distributions,

ht1t ; Gau(0, Sh), for all t 5 1, . . . , T,

where ; is to be read as ‘‘is distributed as,’’ and Sh is
a K 3 K covariance matrix. Notice the Markovian nature
of (3) in that the model for At1t depends on the present
value At and the past values At21, At22, . . . , only
through the present, At.

Such models can be motivated by linearizations of
underlying dynamics. In that view, linearization of a
particular physical model would lead to propagator ma-
trices H that might depend on t and A t. Alternatively,
we could suggest that the model is ‘‘statistical’’ and
replace H in (3) with Ht. To proceed in this fashion, the
Ht must be parameterized or restricted in some way,
since otherwise there are insufficient data to estimate
unrestricted {Ht}. Specifically, for each time t there

would be a single data vector of length K available to
estimate the K 2 elements of Ht.

b. Wind bursts

As stated previously, one dominant paradigm sug-
gests that the stochastic forcing of SSTs at ENSO time-
scales is, through the coupling of the atmosphere and
ocean, related to the spatial distribution of wind stress.
Furthermore, so-called wind bursts, associated with the
intraseasonal oscillation, are increasingly thought to be
an important factor in the onset and development of
ENSO events (e.g., McPhaden and Yu 1999; Moore and
Kleeman 1999; Nakazawa 1998). Based on a linear re-
gression between 7-month-lagged 10-m wind anomalies
(low-pass filtered to include periods greater than about
24 months) and the similarly filtered Southern Oscil-
lation index (SOI; the standardized sea level pressure
anomalies at Tahiti minus those at Darwin), the spatial
region with the highest coefficient of determination (R2

value) is centered around 58N and 1578E. Thus, we will
make use of a wind index at time t, based on the spatial
average of 10-m wind anomalies at 58N and 1568–
1588E, to help predict tropical Pacific SSTs at time t 1
t . Although it has a relatively strong lagged association
with the filtered SOI (R2 ø 0.7, with negative associ-
ation), we do not claim that this statistic is directly
representative of wind bursts. However, our search for
such a predictor was motivated by these phenomena.
Furthermore, it is plausible that if wind bursts in the
western Pacific at the intraseasonal timescale are as-
sociated with ENSO behavior t months in the future,
then a low-pass filtered measure of this activity would
help predict the future ENSO regime. A more detailed
discussion is given in section 4d below.

c. Regime switching: Preliminary data analysis

We develop a relatively parsimonious parameteriza-
tion for time-varying propagator matrices, Ht. As a sim-
ple motivation, consider the plot of the leading spectral
coefficients and shown in Fig. 1 as it relates(1) (1)A At1t t

to a non time-varying evolution model like that in Eq.
(3). Though such a model includes more dimensions
than depicted in this plot, rough intuition suggests that
it corresponds to a single regression-through-the-origin
model. Such a least squares line for regressing on(1)At1t

is also shown in Fig. 1. Our motivation is to expand(1)At

this sort of regression model by 1) focusing on the cur-
rent state’s regime, as suggested by (or, nearly equiv-(1)At

alently, by the SOI at time t) being in a warm, normal,
or cold regime, and 2) anticipating the future regime.
In particular, Fig. 2 presents a plot for the same data,
but we have stratified the points by both the current and
future regime, as well as the wind statistic discussed
above. We also included nine regression models (these
are no longer required to be regressions through the
origin). The idea is that we may gain significant pre-



15 NOVEMBER 2000 3957B E R L I N E R E T A L .

Fig. 1. Scatterplot of the first SST anomaly EOF coefficient, vs(1)At17

. The ordinary least squares fitted regression line is also shown.(1)At

dictive power through such extra stratification. [See
Zwiers and von Storch (1990) for related discussion in
the context of the Southern Oscillation.] Much of the
intense statistical modeling in section 4 is a probabilistic
formalization of this intuition. How we achieve all of
this may not be clear yet, but our goal is easy to illus-
trate. If we know that the current regime is ‘‘normal,’’
a propagator that takes the current vector of spectral
coefficients to another normal vector in t months should
have a different structure than one that takes the current
vector into a ‘‘warm’’ (or ‘‘cold’’) one. Note that Fig.
2 suggests that there is not much linear association be-
tween the first spectral component at time t and t 1 t
(t 5 7 months) when the current regime is warm. Our
model, described below, considers additional spectral
components that will allow us to make reasonable pre-
dictions from this regime.

4. A Bayesian model for SST prediction

a. Overview of the model

For each t; t 5 1, . . . , T, we will model Zt as

Zt 5 Fat 1 n t, (4)

where F is an m 3 K matrix of EOFs and at is a K 3
1 vector of coefficients. We use lower case notation to
emphasize that the modeled at’s need not coincide with
the original A t’s determined by the EOF decomposition.
We describe statistical models for the errors {nt} below.

Next, we shall formulate a statistical model for the
dynamics of {at}. This model is tailored for making
predictions with a t-month lead and is motivated by the
plots shown in Fig. 2. It is a time-varying linear model,

at1t 5 mt 1 Htat 1 ht1t , (5)

where mt are K-vector model intercepts, Ht are K 3 K
propagator matrices, and h t1t is statistically indepen-
dent of at. Models for the innovations {ht1t } will be
discussed below.

The mt and Ht are modeled as random quantities
whose distributions are based on qualitative features of
SST evolution. Specifically, these models will condition
on observable quantities that serve as indicators of re-
gime and prognosticators of regime switching (e.g., a
wind statistic). Similar models were used in Lu and
Berliner (1999) in a different context. We consider three
regimes corresponding to normal (‘‘normal’’), warmer-
than-normal (‘‘warm’’), and cooler-than-normal
(‘‘cold’’) SST anomalies. Note that, while motivated by
ENSO, we do not claim that these regimes are to be
interpreted as ‘‘warm is equivalent to El Niño’’ or ‘‘cold
is equivalent to La Niña.’’

Our modeling introduces various other variables,
model parameters, and their associated distributions.
These components lead to a legitimate statistical model
for all random quantities. Once the modeling work is
complete, we apply Bayes’ theorem (numerically, using
MCMC) to update all distributions based on the data
and provide a predictive distribution for ZT1t , condi-
tional on the data Z1, . . . , ZT and the prognostic var-
iables.

b. Data model

The data model is given in (4). The error vectors {nt}
are included to account for losses of information due to
the dimension reduction and other model errors. Such
a model is similar to that proposed by Wikle and Cressie
(1999). We assume that these error vectors are inde-
pendent of each other in time and have a common mul-
tivariate Gaussian distribution with mean 0 and m 3 m
covariance matrix Sn. Symbolically, we write

nt ; Gau(0, Sn),

for each month t.
Equivalently, the data model is that the Z t are con-

ditionally independent over time and, for each t,

Zt |at, Sn ; Gau(0at, Sn). (6)

The conditional independence of the {Z t} does not mean
that they are unconditionally independent; if that were
the case, there would be no value in studying past {Zt}
to predict future ones. It does mean that in computing
the density of the entire dataset, conditional on all un-
knowns, we simply take the product of the Gaussian
density functions dictated by (6).

c. Process model: Stochastic dynamics of the at

We model the mt and Ht in Eq. (5) as ‘‘regime de-
pendent,’’ using definitions of regimes that include their
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FIG. 2. Same as Fig. 1 except that nine separate regressions are shown, depending on current regime at time t and future regime at time
t 1 7. Note that the regimes are defined such that regime 2 (warm) occurs when the filtered SOI at time t is less than the 33.3d percentile
of all filtered SOI values; regime 0 (cold) occurs when the SOI values are greater than the 66.7th percentile; and regime 1 (normal) occurs
otherwise. The points are color coded according to the value of the wind statistic at time t, described in section 3b. Classification of wind
as small, normal, or large is also relative to the 33.3d and 66.7th percentiles.

evolution in time. We construct two sequences of regime
indicators. The first, denoted by It, classifies the current
state of the system as ‘‘warm,’’ ‘‘normal,’’ or ‘‘cold.’’
The second, denoted by Jt, summarizes selected current
information in a fashion that is meant to suggest or
anticipate a transition to one of the three regimes. Once
these objects are defined, the propagator matrices are
formulated as follows:

Ht 5 H(It, Jt). (7)

That is, we will have nine models, as suggested in sec-
tion 3c. It is worth reiterating that such modeling is
precisely one of the strategies enabled by the Bayesian
framework. In our case, the reader might object to the

model since one would not know Jt. But the point is that
we can develop a model for the evolution of vectors {at}
that is conditional on the It and Jt, and then develop sep-
arate models for the It and Jt. Once accomplished, prob-
ability theory dictates the appropriate predictive analysis.

Note that, in developing a regime-based model, we
have increased the number of parameters that must be
estimated. Using the time-invariant model (3), one must
estimate K 2 elements of H. To use our nine-model ap-
proach, each one being of the sort given by (5), we
would need to estimate 9 3 (K 1 K 2) (e.g., 5990 for
K 5 10) regression parameters; this is formidable. To
develop a comparatively parsimonious evolution model,
we break up the vector at as follows:
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(l)ata 5 ,t (s)1 2at

where is an nl vector of the large-scale components(l)at

(corresponding to the first nl EOFs) and comprises(s)at

the remaining ns 5 K 2 nl smaller-scale components.
We consider a stochastic evolution model represented
as

(l) ls (l)a d(I , J ) G(I , J ) G at1t t t t t t5 1
(s) sl ss (s)1 2 1 2 1 21 2a 0 G G at1t t

(l)ht1t1 , (8)
(s)1 2ht1t

where the ht are mutually independent, Gaussian ran-
dom variables:

(l)ht1t ; Gau(0, S ), (9)h(s)1 2ht1t

and we write

ll lsS Sh hS 5 . (10)h ls ss1 2(S )9 Sh h

We form models for these covariance matrices later.
Also, in (8), define m(It, Jt) and H(It, Jt) as

d(I , J )t tm(I , J ) 5 and (11)t t 1 20

sG(I , J ) Gt tH(I , J ) 5 . (12)t t l ss1 2G G

The critical point is that the only time-varying param-
eters are those at large scales [d(It, Jt) and G(It, Jt)].
With this reduction, we have [9 3 (nl 1 )] 1 [2 32nl

(nl 3 ns)] 1 regression parameters to estimate. For2ns

nl 5 4 and ns 5 6, there are 264 regression parameters,
a large reduction from the 990 parameters that must be
estimated if we allow all scales to be regime dependent.

Note that (8) provides distributions for at11, given
a1, at12 given a2, etc. To complete the stochastic model,
we must initialize it by specifying prior distributions on
a1, . . . , at . A discussion of these prior distributions can
be found in the appendix.

The formulations in (8)–(12) are not unique, nor do
we suggest them to be the ‘‘best.’’ The restriction to
nine models is not critical; we made that choice for
convenience and by analogy to ENSO. One of the ad-
vantages of the hierarchical Bayesian framework is that
the specific components of the model are subject to
debate and refinement. Other model developers might
prefer more refined classification of states and/or alter-
native parameterizations of propagators. While we be-
lieve the simple model here is actually quite good, our
primary message is the strategy.

d. Regime evolution

Next, we specify models for the two collections of
regime indicators:

{It : 1 # t # T} and {Jt : 1 # t # T}.

The It are to classify the current state (2 5 warm, 1 5
normal, and 0 5 cold). In general, the model for It could
be a stochastic one; this would be particularly important
if the modeler intended the It to be physically mean-
ingful indicators of ENSO. A. simpler strategy is adopt-
ed here. We use the SOI, after application of a low-pass
filter (a recursive Butterworth filter with cutoff at around
24 months; see Rabiner and Gold 1975), to serve as a
simple summary of the current state. (We let SOIt denote
this filtered SOI.) We formulate a threshold model (Tong
1990); that is, we define It as follows:

10, if SOI . s , (13)t t
2 1I 5 1, if s # SOI # s , and (14)t t t t

22, if SOI , s , (15) t t

where the threshold values # are fixed, but may2 1s st t

be chosen to depend upon time. In particular, one might
specify that the thresholds vary with month or season
(e.g., Trenberth 1997). In this article we did not vary
these values in time, though we leave that as an inter-
esting possible enhancement. We discuss our choice for
these parameters in the appendix.

The Jt classify the current prognosticator state (2 5
warm, 1 5 normal, and 0 5 cold), based on 1) Wt,
where Wt is the current value of the wind statistic de-
scribed in section 3b, 2) time-by-wind interaction (more
explicitly, we consider the sine and cosine of a month
indicator multiplied by Wt), and 3) a quadratic term in
the wind statistic, . The time-by-wind interactions2Wt

are included to account partially for seasonal phase lock-
ing of ENSO regimes. This information is certainly in-
complete. The state of the system in t months will be
determined by a variety of factors. Hence, we use a
stochastic model for the Jt.

Note that we do not claim that Jt 5 It1t . Rather, Jt

is simply a summary of information suggesting that con-
ditions may be right for a particular transition. The cor-
rect view is that our predictive distribution depends on
the current state It and is a mixture of three distributions,
where the mixing probabilities are those corresponding
to Jt. We will clarify this more when results are dis-
cussed in section 5.

Next, we specify the joint distribution,

p({Jt : 1 # t # T} | {Wt : 1 # t # T}, uJ), (16)

where uJ denotes a collection of modeling parameters
defined below. We assume that the Jt are mutually con-
ditionally independent. Our model is that the joint dis-
tribution p({Jt : 1 # t # T} | {Wt : 1 # t # T}, uJ) is
the product
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FIG. 3. Posterior percentiles of the hidden process yt. The SOI at time t 1 7 is plotted at time t for comparison.

T

p (J | W , u ). (17)P t t J
t51

We could condition on previous lags of W in (17), but
preliminary data analyses suggested that these are not
beneficial.

The task of building the distributions (17) requires
the construction of three probabilities (for Jt being 0, 1,
or 2) depending on Wt. We use a hidden or latent variable
model; this variable is hidden in the sense that it is never
actually observed. For an example of hidden Markov
models in atmospheric science, see Hughes and Guttorp
(1994). The idea is founded in the statistical notion of
generalized linear models (e.g., McCullagh and Nelder
1989); implementation in Bayesian models (involving
MCMC as a computational tool) was developed in Al-
bert and Chib (1993).

The development of our hidden variable model is
based on the following intuition. Though we do not
insist that Jt 5 It1t exactly, reasonable predictive power
would result if this were typically the case. To that end,
we consider a hidden random variable yt, which deter-
mines the value of Jt as follows:

10, if y . g , (18)t t
2 1J 5 1, if g # y # g , and (19)t t t t

22, if y , g , (20) t t

where , 0 and . 0 are to be specified. The yt
2 1g gt t

and resulting Jt would be particularly useful if the yt

roughly predicted SOIt1t , since the latter quantity serves
as the classifier of regime It1t . With this intuition, op-
tions for the selection of the , 0 and . 0 are2 1g gt t

similar to those regarding the thresholding values ( ,2st

). See the appendix for a brief discussion of our choic-1st

es for the examples presented here. An interesting ex-
tension is to model the ( , ) values as unknown (and,2 1g gt t

hence, random in the Bayesian paradigm). We will in-
vestigate this elsewhere.

Our model for the yt is that they are conditionally
independent, with distributions as follows:

yt ; Gau( by, ),2x9 st y (21)

where xt is the vector of conditioning variables con-
taining a 1 (for the intercept), Wt, Wt sin(mo t), Wt

cos(mot), and , where mot is a month indicator (i.e.,2Wt

mot 5 (2pMt/12), where Mt are month codes 1, . . . ,
12). We included Wt sin(mo t) and Wt cos(mo t), so that
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FIG. 4. Histograms of the posterior samples for the hidden-process regression parameters by.

the model could respond to potential seasonal depen-
dences on predictability (e.g., Cane 1992, p. 607); and

models potential nonlinear dependence. To clarify2W t

notation, note that uJ 5 (by, , { , }). With this2 2 1s g gy t t

definition, we have

1Pr(J 5 0 | W , u ) 5 Pr(y . g ), (22)t t J t t

2 1Pr(J 5 1 | W , u ) 5 Pr(g # y # g ), and (23)t t J t t t

2Pr(J 5 2 | W , u ) 5 Pr(y , g ), (24)t t J t t

where these probabilities are computed using the Gauss-
ian distribution in Eq. (21).

e. Prior on model parameters

Completion of the Bayesian model requires specifi-
cation of a prior distribution for the various parameters
introduced earlier. These include the data-model co-
variance matrix Sn, all the regression coefficients de-
fined in (8), as well as the error covariance matrix Sh,
and the parameters uJ. This prior specification is a crit-
ical and challenging aspect of a Bayesian analysis, both

generally and in our example. Further, our specifications
in this article are by no means exhaustive, but rather
serve as reasonable illustrations. Hence, to communicate
best the overall modeling strategy and our results, we
defer details of our prior development to the appendix.
We performed some analyses (as indicated in the ap-
pendix) to gauge the sensitivity of results with respect
to these prior specifications.

5. Results

a. Implementation

Our Bayesian prediction results were obtained nu-
merically using an MCMC procedure known as the
Gibbs sampler (Geman and Geman 1984; Gelfand and
Smith 1990). A general overview of these methods can
be found in Gilks et al. (1996). Applications of these
methods to atmospheric science problems can be found
in Wikle et al. (1998; 1999, manuscript submitted to J.
Amer. Stat. Assoc.) and Royle et al. (1998). The essence
of the MCMC approach is to learn about a complex
joint probability distribution by simulating realizations
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FIG. 5. Percentiles of 7-month Niño-3.4 region averages of SST-anomaly predictions. The observed value is shown
for comparison. Note that each of these predictions are out-of-sample, in that only data up to seven months before
the given verification time were used in developing the model and generating the prediction.

from it. This is accomplished by specifying a Markov
chain with a stationary, ergodic distribution that coin-
cides with the distribution of interest (in our context,
the posterior distribution of all model parameters, given
the data). Details of the specific Gibbs sampler imple-
mentation used for this article can be found at the Web
site http://www.stat.ohio-state.edu/;sses/papers.html.

For each forecast period discussed below, we ob-
tained 10 000 iterates from the Gibbs sampler, discard-
ing the first 1000 to account for the Markov chain
‘‘burn-in.’’ All reported statistics were then based on
Monte Carlo estimates from these Gibbs-sampler iter-
ations. Note that 10 000 iterates from this model can be
obtained in about 11 hours on a 1999 vintage desktop
workstation running MATLAB.

b. Model output

1) HIDDEN PROCESS

A key feature in the Bayesian model is the hidden
regime process {Jt}, or, equivalently, {yt}. Figure 3
shows a summary of the posterior of yt for the last 10
years from an implementation of our model for a

7-month (i.e., t 5 7) forecast based on data through
December 1998. The plot shows several percentiles of
the posterior distribution as functions of time. For com-
parison, the filtered SOI at time t 1 7 is also plotted at
time t; recall from section 4d that we intend that yt

should roughly correspond with SOI t1t . Although the
posterior medians do not track the SOI exactly, central
95% prediction intervals obtained from the posterior of
the yt’s typically cover SOI t1t , suggesting that the hid-
den-process model is reasonable. Indeed, instead of pre-
dicting SST directly, one could use yt itself as a predictor
of ENSO activity. Such a predictor would have predic-
tion bounds similar to those shown in Fig. 3. However,
for this figure, note that all values except the last seven
months are actually hindcasts. Proper, out-of-sample
forecasting is considered below.

It is of interest to know if the explanatory variables
that were included in the model for yt are useful. Figure
4 shows histograms for the posterior distribution of the
parameters by. The histograms for the sine and cosine
interaction components and the quadratic component of
the model cover zero with nontrivial frequency, sug-
gesting that these terms may not be critical in deter-
mining the future climate state.
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FIG. 6. SST anomalies for Oct 1997. (a) Observed anomalies, (b)
posterior median 7-month out-of-sample prediction of smoothed SST
anomalies from the Bayesian hierarchical model, (c) lower 2.5th per-
centile from the posterior distribution of the 7-month prediction, (d)
upper 97.5th percentile from the posterior distribution of the 7-month
prediction, and (e) length of 95% prediction interval, which has end-
points equal to the 2.5th and 97.5th percentiles.

2) LONG-LEAD PREDICTION OF NIÑO-3.4 AVERAGE

Alternative indices of ENSO activity based on SSTs
can be defined as averages of SST anomalies over se-
lected regions, such as the Niño-3.4 region (58S–58N,
1208–1708W). Figure 5 shows out-of-sample 7-month
predictions of the Niño-3.4 index every three months,
verifying from April 1997 through July 1999, respec-
tively. By ‘‘out-of-sample,’’ we mean the results are fair
in the sense that they are based on separate MCMC
analyses that use only data up to seven months prior to
the indicated verification time. Figure 5 presents per-
centiles of the posterior distribution of these predictions.
For comparison, the time series of the observed Niño-
3.4 index is shown for the same periods. One feature
that stands out is that the observed index is within the
95% prediction intervals for each forecast period. Note
that the intervals shown here are true prediction inter-
vals in that they incorporate the variability in the pre-
dicted SST anomalies that arise from the nt process
given in (4). Like virtually all predictions of the 1997–
98 warm event onset, the bulk of the predicted distri-
bution is lower in magnitude than the observed Niño-
3.4 index. However, comparison to other methods, pre-
sented in Fig. 1 of Barnston et al. (1999), shows that
even our predicted medians are as good or better than
current operational and experimental methods, dynam-
ical or statistical, at 6–7-month leads.

3) LONG-LEAD PREDICTION OF ANOMALY FIELDS

A key strength of the present Bayesian approach is
that it accounts for uncertainty and provides distribu-
tional results reflecting that uncertainty. This is not only
the case for summaries such as those presented in Fig.
5, but for the full spatial anomaly field. Figure 6a shows
the observed anomaly field for October 1997. The field
of sitewise medians of our out-of-sample 7-month fore-
cast of the smoothed anomaly field, FaT1t , for this pe-
riod (based on data through March 1997) is shown in
Fig. 6b. Note that we would have forecasted a strong
warm event, although we did not capture the unusual
magnitude of this early warm event. This figure also
shows the sitewise lower 2.5th and upper 97.5th per-
centiles, as well as the absolute difference between the
two. Note that our prediction is most uncertain in the
region of strongest warming and that a very strong warm
event is within the ensemble of possible predictions.

4) LONG-LEAD PREDICTION: MIXTURES OF REGIMES

In addition to the distributional information presented
above, the forecaster also has information available
about the potential regimes. Recall that our forecasting
distribution is actually a mixture of three forecasting
distributions. For example, Fig. 7 shows the out-of-sam-
ple 7-month prediction of the smooth anomaly field for
October 1998, based on data through March 1998. In
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FIG. 7. SST anomalies for Oct 1998. (a) Observed SST anomalies;
(b) out-of-sample 7-month probability-weighted mixture of the maps
shown in (c), (d), and (e) below, where the mixture weights are based
on the model-generated posterior probabilities of moving to the future
regime; (c) posterior mean 7-month prediction of smoothed SST
anomalies from the Bayesian hierarchical model assuming that the
hidden climate regime in Oct 1998 will be cold (regime 0); (d) same
as (c) except for future normal regime (regime 1); and (e) same as
(c) except for future warm regime (regime 2).

this case, we present three regime-dependent predic-
tions, that is, the predictions (posterior means) if the
future regime is cold (regime 0; Fig. 7c), normal (regime
1; Fig. 7d), or warm (regime 2; Fig. 7e). In addition,

we give the mixing probabilities, based on the Bayesian
posterior distribution, for each possible future regime.
The probability is about 0.79 that the climate regime
will be normal, 0.21 that it will be cold, and nearly zero
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FIG. 8. Same as Fig. 7 except that the out-of-sample 7-month
predictions are for Jul 1998.

that it will be warm, in October 1998, based on data
through the previous March. The overall posterior mean
prediction is the probability weighted sum of these three
maps, as shown in Fig. 7b. For comparison, the observed
anomalies in October 1998 are also shown in Fig. 7a.
The model has done a good job of predicting the con-
tinuing cold event (although it recognizes that there is
likely to be a deviation from the classic cold-event pat-

tern). Note that forecasters could reweight these maps
based on their experience or other information.

Similar mixture prediction results are shown in Fig.
8 for the 7-month prediction of July 1998, based on data
through December 1997. Note from Fig. 5 that this was
a period during which the model did not forecast well
(at least in terms of the median forecast). In this case,
the model assigned more weight to the regime 2 (warm)
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prediction than it should have in retrospect. But one can
see that the cold pool in the central Pacific is suggested
by the regime 0 and regime 1 predictions. This ability
to recognize several potential forecasts is one of the
strengths of the hierarchical mixture approach.

6. Discussion

Recent results of long-lead-prediction model com-
parisons for the 1997–98 ENSO event suggest that sta-
tistical models performed well when compared to de-
terministic and hybrid models (Barnston et al. 1999;
Anderson et al. 1999). Nevertheless, there is often a
perception that statistical models for long-lead predic-
tion have exhausted their potential and that dramatic
future improvements will come only from deterministic
models. In this paper, we present an alternative statistical
long-lead-prediction model that makes use of advance-
ments that have revolutionized statistical modeling over
the last decade. We do not claim that this particular
Bayesian hierarchical space–time mixture model is dra-
matically superior to existing methodologies. Rather, we
present it to illustrate that models such as these open
the door to serious exploration of complicated statistical
models for long-lead prediction. In this sense, the po-
tential for statistical models in long-lead prediction is
every bit as great as that for deterministic models. Fur-
thermore, we note that since this is a desktop worksta-
tion model, even comparable results to large determin-
istic models is a significant advance relative to com-
putational effort.

We have illustrated how one might incorporate phys-
ical understanding (e.g., about winds and the SST dy-
namical system) into this model and account for the
uncertainty of using such information (by specifying
prior distributions). The output from this model then
gives reasonable predictions in a distributional context,
having factored in this uncertainty. It could be argued
that this is all we can ask of a forecasting procedure,
namely, to give the best forecast and a realistic assess-
ment of how good it is likely to be.

There is much more that could be done to the present
model to improve it. We have noted many of these
throughout the exposition above. It was not our intention
at this time to find the optimal model, but rather to
present a viable alternative methodology. We are de-
veloping an operational version of this model, the details
of which will be presented elsewhere.
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APPENDIX

Priors on Parameters

a. Prior distribution for Sn

The critical portion of the statistical model (4) focuses
on use of the first K spatial EOFs. We model Sn based
on some of the remaining EOFs, denoted as Fc. That
is, the error terms {n t} are intended to account for spa-
tial structure lost in dimension reduction. The intuition
is to define Sn so that it models spatial variation rep-
resented by the m 2 K remaining SST anomaly EOFs.
For the results presented here, m 5 2261 and, in the
notation of section 4c, we chose K 5 10 with nl 5 6
and ns 5 4. The first 10 EOFs explain approximately
74% of the variance in the SST anomalies. However,
since m 2 K is very large, we did a second dimension
reduction for simplicity; namely, we only used EOFs K
1 1 through K 1 k (we set k 5 20, which accounts for
an additional 14% of the variance of the SST anomaly
field). Of course, k EOFs do not specify an m 3 m
positive-definite covariance matrix. Hence, to proceed
with the intuition given above, we write

k

c cS 5 a c I 1 l F F 9 , (A1)On n j j j1 2j51

where cn was chosen to account for the remaining var-
iance that corresponds to the last (m 2 K 2 k) EOFs.
Finally, the quantity a is assumed to have an inverse
Gamma distribution, a ; IG(7, 0.17), where IG(q, r)
represents an inverse gamma distribution with shape
parameter q and scale parameter r. The choices of q 5
7 and r 5 0.17 imply that a has prior mean 1 and prior
variance 0.04. The results presented in this paper are
not overly sensitive to these choices.

b. Prior distributions for a1, . . . , at

To complete the dynamical model for {at }, we spec-
ified the following ‘‘initializing’’ prior distributions:

at ; Gau(At, SA,0); t 5 1, . . . ,t , (A2)

where the At are the least squares fitted spectral coef-
ficients from the EOF decomposition of {Zt}; we spec-
ified SA,0 to be the estimated marginal covariance matrix
of At multiplied by a constant to ‘‘inflate’’ the prior
covariance to account for the fact that these estimates
were based on a rather limited set of realizations. We
chose the value of 4 for this constant and noted that the
results are not sensitive to this choice.

c. Prior distribution for process-model parameters

Consider the dynamic model parameters dIJ, GIJ, Gs,
Gl, Gss, and Sh. The critical issue for developing prior
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models for the intercept and regression parameters is
that we do not actually know the hidden process {Jt}.
For purposes of prior development, we assumed that Jt

is determined by SOI t1t . Then, we simply estimated the
parameter matrices by ordinary least squares. These es-
timates were then used as the prior means. The corre-
sponding prior variances were obtained by inflating the
ordinary least squares estimated parameter variances
(we arbitrarily used a constant inflation factor of 4 for
each and noted that the results are not overly sensitive
to this choice). Note that we applied the ‘‘vec’’ operator
to all the G matrices to convert them to vectors. We
assumed that these vectors have multivariate normal dis-
tributions. The inverse covariance matrix was as-21Sh

sumed to have a Wishart distribution with prior mean
given by the corresponding ordinary least squares es-
timate based on the {At} from the EOF decomposition
of {Zt}.

d. Prior distribution for uJ

The key task here is the specification of prior distri-
butions for the parameters by and introduced in (21).2s y

This is difficult in principle since the {yt} are hidden
variables; we do not even specify what physical vari-
ables they represent. One option is to use comparatively
uninformed prior distributions for the parameters. A sec-
ond suggestion, used here, is ad hoc, but intuitive. Recall
from section 4d that the yt would be particularly useful
if they essentially predicted SOIt1t , since this quantity
serves as a primary classifier of regime It1t . We actually
performed an ordinary least squares linear regression
analysis fitting the model

SOIt1t 5 bSOI 1 «SOI(t 1 t),x9t (A3)

where the errors {«SOI(t 1 t) : t 5 1, 2, . . .} were
assumed to have a constant variance . [cf. (A3) to2s «

(21).] The fitted parameters were assigned to beb̂SOI

our prior mean vector for by. The estimated covariance
matrix, Ĉ for , was inflated by a constant cb and theb̂SOI

result was used as our prior covariance for by. Finally,
we specified by ; Gau( , cbĈ), where cb was chosenb̂SOI

to be 4. The results are not overly sensitive to this
choice.

Similarly, the estimated value was used as the prior2̂s «

mean for the distribution on . Specifically, we as-2s y

signed an inverse gamma prior to with mean given2s y

by (50.65) and a variance of 0.25 and noted that2̂s «

the results are not sensitive to these choices. We as-
sumed that by and are a priori independent. Although2s y

this assumption is highly questionable given the prior
construction, it is not suspected to be critical to the final
results.

e. Threshold parameters

Recall that, to determine the regime at time t, we use
the filtered SOI and require threshold values and2st

. For the results presented here, for all times t, we let1st

and be the 33.3rd and 66.7th percentiles from the2 1s st t

filtered SOI time series {SOIt : t 5 1, . . . , t 5 T}.
Similarly, since we have, in a sense, calibrated the yt

process to SOIt1t by our choice of prior distribution
given above, we also set and to be the same as2 1g gt t

and , respectively.2 1s st t
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