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ACCEPTANCE-REJECTION SAMPLING MADE EASY*

BERNARD D. FLURYY

Abstract. A simple proof, consisting of three lemmas, is given for the acceptance-rejection method
in Monte Carlo sampling from a density /. The proof is valid for random variables in general dimension,
for bounded as well as for unbounded support, and it is not affected by discontinuities or infinite peaks

of f.
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1. Introduction. Suppose we wish to generate a random variable X with density
f(x), x€R”. Suppose furthermore that there exists a density function g(x), x €R?,
and a constant ¢ = 1 such that cg(x) = f(x) for all x € R”. (Typically, g is a density
such that Monte Carlo sampling from g is easy, for instance, a uniform distribution
on a rectangular area.) Then the well-known acceptance-rejection algorithm proceeds
as follows:

Step 1. Generate Y from density g.
Step 2. Generate U from the uniform distribution on the interval (0, cg(Y)).
Step 3. If U= f(Y), put X < Y, deliver X

else, return to Step 1.

Proving that the algorithm produces X with the desired density amounts to showing
that, in any given execution of Steps 1 to 3, the algorithm either delivers X with the
correct density, or else goes on to the next iteration. In other words, it is to be shown
that, conditional on acceptance in Step 3, X follows density f.

The reason for this note is the author’s dissatisfaction with the proofs commonly
found in textbooks on simulation. They tend to be purely technical, without giving
much insight into why the method works (e.g., Rubinstein [1981, p. 46]), or lengthy
and verbal (e.g., Morgan [1984, p. 100ff]), or incomplete and unnecessarily inter-
twined with examples (e.g., Kalos and Whitlock [1986, p. 61ff]). Moreover, I
found the frequent distinction between the univariate case and the multivariate case
(Rubinstein [1981, Thms. 3.4.1, 3.4.2]) superfluous, as the proof for general di-
mension p is just as simple as the proof for the univariate case. A recent paper by
Grzesik (1989) gives an apparently new and unusual proof, but it lacks simplicity and
is unnecessarily constrained to the univariate case and to finite support of the
density f.

2. The proof. We shall state three lemmas, each of them rather trivial, but
together they provide an elegant proof that the acceptance-rejection method works.
The only prerequisite for understanding the proof is the notion of conditional
distribution.

LeMMA 1. Let X denote a p-variate random variable with density g(x), let ¢ >0
denote a real constant, and let Y denote a random variable such that the conditional
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distribution of Y, given X =x, is uniform in the interval (0, cg(x)). Then the joint
distribution of the (p + 1)-dimensional random variate (}) is uniform in the set

M=<{<;>;XGIRP, 0<y<cg(x)}.

Proof. Let h(x, y) denote the joint density of X and Y. Then

L _1 if(x)EM
cg(x) ¢ y

=0, else.

h(x,y)=g(x)

In Lemma 2, V(.) will denote the m-dimensional volume of a set.

LeMmMA 2. Suppose the m-dimensional random variable Z has a uniform distri-
bution in &« CR™, where 0 < V(&) <o, Let B C ., V(#)>0. Then the conditional
distribution of Z, given Z. € %, is uniform in 5.

Proof. The proof is obvious.

LEMMA 3. Suppose the (p + 1)-dimensional random variable (¥), where X has
dimension p, follows a uniform distribution in the set # = {(3):x €R?, 0 <y <f(x)},
where [ is the density function of a p-variate random variable. Then the marginal
distribution of X has density f.

Proof. The density of X at the point x € R” is [4* dy = f(x).

Putting the lemmas together, with m = p + 1 in Lemma 2, proves the acceptance-
rejection method.

3. Anexample. In an advanced course the three lemmas can be stated as evident,
without proof. In a course on a moderate level it is useful to illustrate the procedure
graphically with an example of dimension p= 1. A good and simple example is

simulation from the half-normal distribution, using exponentially distributed random
numbers, as shown in Fig. 1. Here,

2
fx)= \/% exp [— %], xZ0,

gx)=exp[—x], x=0,

c= \/zexp [l]z1.3155,
T 2
- X = w -l_
k4 {(y).x_0,0<y< Trexp_2 xpf,
(xS \/E X
B {(y).x_0,0<y< ”exp_ > [
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FIG. 1. Acceptance-rejection sampling from the half-normal distribution, using the exponential
distribution.
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