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SUMMARY
A procedure is derived for extracting the observed information matrix when the EM
algorithm is used to find maximum likelihood estimates in incomplete data problems.
The technique requires computation of a complete-data gradient vector or second
derivative matrix, but not those associated with the incomplete data likelihood. In
addition, a method useful in speeding up the convergence of the EM algorithm is
developed. Two examples are presented.
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1. INTRODUCTION

THE EM algorithm for finding maximum likelihood estimates (MLE’s) is a powerful numerical
technique useful in contexts ranging from standard incomplete data problems (e.g. censored
and truncated), to iteratively reweighted least squares analysis and empirical Bayes models.
‘Several analyses of its properties with examples and cautions for its use have appeared in the
literature (see Louis et al., 1976; Sundberg, 1976; Dempster et al., 1977; Laird, 1978, and the
references thereof). These discussions will not be repeated here.

The primary conceptual power of this iterative algorithm lies in converting a maximization
problem involving a complicated likelihood, into a sequence of “pseudo-complete” problems,
where at each step the updated parameter estimates can be obtained in a closed form (or at
least in a straightforward manner). Unlike Newton—Raphson or Fletcher—Powell techniques,
no gradients or curvature matrices need to be derived. Unfortunately this conceptual and
analytic simplification does not appear to provide a means of estimating the information
matrix associated with the maximum likelihood estimates. There have been, however,
solutions published for a few special cases (see Hartley and Hocking, 1971, for example). Of
course, an alternative to the method contained herein is use of a derivative-free function-
maximizing algorithm.

In this paper, a technique for computing the observed information (see Efron and Hinkley
1978) within the EM framework will be presented. It requires computation of the complete-
data gradient and second derivative matrix and can be imbedded quite simply in the EM
iterations. In addition, a technique potentially useful for improving the speed of convergence of
the algorithm is developed. Background details from the cited references will not be
reproduced, but some basic examples are included. More complicated applications (where the
EM is most useful) follow directly from the theory, but quickly become notationally opaque.
For the type of application which generated the current research, see Turnbull (1974), Louis et
al. (1978), Dinse (1982) and Laird and Louis (1982).

2. THE ML PROBLEM AND EM ALGORITHM

The objective is to find the MLE for a p-dimensional parameter 6 in a space ®. The
underlying probability model induces a density or mass function f(x | 6) on a sample space y,
where x = (xy,...,x,)T. Instead of observing xey, one observes the value of a measurable
function Y(x) = ye Y. The MLE () is to be found using the data y.
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The EM method is only attractive in situations where finding the complete data MLE and
either the observed or the expected information matrix would be straightforward, but the
problem based on the incomplete data (Y) requires an iterative solution. Typically the
complete data are from an exponential family. The algorithm operates as follows. Let

Ax,6) = log {f(x]0)},

2X(y,0) = log { fy(y|0)} = log{ fo(x 16) du(X)},

where R = {x: y(x) = y}, and p(x) is a dominating measure. The case when the dimension of R
is less than n requires special notation, which will not be developed here.

Now, instead of maximizing A* directly, the EM algorithm proceeds by using an initial
estimate 0¥ and solving the pseudo-complete data problem:

maximize Eqo[A4(X,0)| X eR].
0O

The maximizing value for this pseudo-complete data problem is called 6 and the iteration is
continued until || §@*Y—6" || is sufficiently small or some other convergence criterion is
satisfied. Under conditions specified in Sundberg (1976), 6 — 0, the MLE. Notice that the EM
algorithm induces the map 6@ "1 = ("), which will be used in Section 5.

3. ESTIMATING THE INFORMATION
3.1. The General Case
We assume that the regularity conditions in Zacks (1971, Chapter 5) hold. These guarantee
that the MLE solves the gradient equation (3.1) and that the Fisher information exists. To see
how to compute the observed information in the EM, let S(x,6) and S*(y,6) be the gradient
vectors of A and A* respectively and B(x, 0) and B*(y,6) be the negatives of the associated
second derivative matrices. Then by straightforward differentiation (see the Appendix):

S*(y,0) = Eo[S(X,0)| X eR],
S*(y,0) = 0,
1,(0) = E,{B(X,0)| X € R} — Eo{S(X, 0) ST(X, 6) | X € R} +S*(y,0) S*"(y, 6). (3.2)

The first term in (3.2) is the conditional expected full data observed information matrix,
while the last two produce the expected information for the conditional distribution of X given
X eR. That is, using a simplified notation:

1y=1(g):IX_Ix|Y, (3:3)

which is an application of the missing information principle (Woodbury, 1977) to the observed
information. Notice that all of these conditional expectations can be computed in the EM
algorithm using only S and B, which are the gradient and curvature for a complete-data
problem. Of course, they need be evaluated only on the last iteration of the EM procedure,
where S* is zero.

Efron and Hinkley (1978) define Iy as the observed information and show that in most cases
it is a more appropriate measure of information than the a priori expectation E,[ B*(Y, 0)]. It is
certainly easier to compute.

3.1)

3.2. The Independence Case

When X,,..,X, are independent but not necessarily identically distributed and
Y(X) = Y¥(X)), the A,A* §,S* and B,B* become summations and R = R; xR, X...xR,,
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Thus

§*(y,0) = ,Zl Sty 0)

= Y Eo{S{X,0)| X;eR} 3.1)
i=1
and )
Iy = Z Eé{Bi(Xi,9)|Xi€Ri}
i=1

— Y Ef{S(X, 0)ST(X, 0)| X R}
i=1

—2Y EyfSix, 0)| X,€ Ry} EqfS(X;,0)| X;e R (3.2)

When each X; is an indicator vector for multinomial distribution, I, reduces to

S S(X,8)ST(X, 0) (3.4)

i=1
where
Xi = Ef[X;| X;eR,].

4. EXAMPLES
4.1. Example from Dempster et al. (1977)
Here, 6 is to be estimated from the multinomial distribution:
(G+16), X1—6), 4(1—-0), 40}, 0<6<1.
With Y,, Y,, Y3, Y, as the frequencies, let
Y, =X,+X,, ,=X; Y,=X, Y,=X,
where X is multinomial with parameters
Therefore, if X were observed,
X, +Xs
X+ X3+ X+ Xs)
 The MLE can be found by solving a quadratic and with data Y = (125, 18,20, 34),
0 = 06268215....
Alternatively, the EM algorithm can be used where
% Q) oW
T 1go N1 =5 gm
z+340 2460
and X, = Y,_, k= 3,4,5. Here

9:

+1) _ +1) _ +1
X(Zv )= Yla Xv(lv ) = YI_X(ZV )’

Y, 0%+ 2+ 6 Y,
Y, 0+ 240V (Y,+Y;+Y,)
B XYV 4+ X,
X0+ X3+ X+ X5

9(v+ 1) —
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Starting at 8 = 0-60, the first few iterates are (d = 6% — g~ V),
9© = 0:600000,  dV = 002318800,
00 = 0623188,  d® = 000314975,
0@ = 0626338,  d® = 000041927,
0 = 0-626757,
60 = 0626812,
0 = 0-6268215....
Here
X, +Xs B X;+X,

S(X,6) =

] 1-6
X,+Xs X3+X
B(X,0) = 202 > (13_ 0)2“.

Direct computation is especially straightforward, since (3.4) applies. Nevertheless, applying
(3.2) gives a measure of the loss of information, with

Iy = 4353 —-57-8 = 377-5.

This information is associated with an effective sample size of 88-3 [ = 377-56(1 —0)].

4.2. Example: Mixture of Two Normals

The case of equal, known variances will be considered. Data Y, ..., ¥, are observed and are
known to be i.i.d. from a mixture of two normal distributions. Assuming ¢ = 1, the density of
each co-ordinate of Y is

vl o, 1y, €) = (1—&) p(y—po) +ed(y —py),  — 00 <pig, g <0, 0<e<7,

where
Pe) = e
J@n)
This can be considered a missing data problem by letting X = (Y, Z), where
Z= {0 according as Y is from Nuo, 1).
1 N(py, 1)

The vector Z =(Z,,...,Z,) is unobserved. Implementation of the EM algorithm is straight-
forward. Let

w; = WY, o, 41, 8) = E[Z;| Y, po, 1, €)]

_ ep(Y,— py)
ep(Y;— py) +(1—¢) p(Yi — po)

and

w? = w(Y,, ug”, uf”, ).
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Then, the parameters are updated by

1 n
g0+ — 2 Z W(iv)’
ni=1

WD = (=D)L Y (1—w) Y,
i=1

i=
n

‘u(1v+ 1) _ {ng(v+ 1)}—1 .21 WE'V) }Iz
i=

The complete data gradient S(X, ) is needed to compute the observed information. This
likelihood models a two-stage experiment, where first a population is picked by a Bernoulli
experiment, and then a normal variate is generated. Therefore,

MX; pos 1, 8) = Zlog(e)+(1—Z)log (1 —e)

+(1—-2)log(¢(Y;— po)) + Zlog (H(Y — py))
0 S(X 35 o, 1, 8) 18

0
—— = (1=Z)(Yi—po),

op,
0
2 Z(Y—u
aﬂl l( 13 #l)’
0 _Z; 1-Z,;
o ¢ 1—¢’
1-Z, 0 0
B(XbﬂO’#l’g) = 0 Zi 0
0 0 (Z/A)+(1—-Z)/(1—¢)
and
(1=wy) (Y;— po)
wi(Y,—py)
S*(Yi’ﬂo’/haﬁ) = !
w; (1—-w)
& 1—c¢

To see how the procedure works, 500 observations were generated using uo = 2, u; = 0 and
e = 0.51. From these data:

fo=1970, p, = —0042, &=0483,
2417 0 0
Iy = 0 2583 0
0 0 20022
and Iy is symmetric with lower triangle:
1369
—206 1597
2185 2191 11312
Iy can be inverted to find the covariance matrix of (i, ft; and ).

1 have chosen a case where convergence is rapid and the chance of converging to a non-global maximum is small.
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5. SPEEDING UP CONVERGENCE OF THE EM
5.1. The Basic Approximation

Following Louis et al. (1976) and Sundberg (1976), if J(6) is the Jacobian of the map
0+ = g(6"™), then local to the MLE (= 6), with d¥ = -9~

Aot D = JOO~ V) 4» _{H J(@O~ 1))}d(l) vP1. (5.1)

Equation (5.1) is derived by expanding g(6"") in a first-order Taylor series about ¢~ 1,
From (5.1), for large j and all v>1 the approximation:

do+itD = Jv(é) dU+n
holds, and implies that, with J denoting J(6):

9 — f=09 4 3 g+
&

=gy Jl>d(j+1)
(&

= 0P+ (1—J) "1 adu*y, (52)

where 1 is the p x p identity matrix and 6 is p-dimensional. The last step is justified by the fact
that at the MLE the eigenvalues of J are all less than one in absolute value. In fact the largest
modulus of them determines the speed of convergence of the EM algorithm in a neighbour-
hood of 8. Formula (5.2) is an example of Aitken’s acceleration method.

Using (5.2) there is the possibility of producing the effect of an infinite number of iterations
by the following algorithm:

1. From 6Y produce §Y* " using EM.

2. Estimate J(8Y) by J (see Section 5.2).

3. Compute

BU+D = U (1 —J)"1gu*y,
4. Use 6Y* 1V in step 1.

5.2. Estimating (1—J)~!
Using (3.3) and the results of either Louis et al. (1976) or Sundberg (1976), J satisfies

J=(y—I)Ix' =(1-L I (5.3)
(1=N"t=II;%

It is important to stress that the expected information for X should not be used, for there is
no guarantee that subtracting Iy from it results in a non-negative definite matrix.

The decision to use the Aitken projection should be based on the cost of inverting I,
relative to running through a single iteration of the EM. Also, the approximation is useful only
local to the MLE, and should not be used until some iterations have been performed. In
addition, instead of inverting (1 —J), a finite series approximation to it (2" 0J") can be used in
step 3. Of course, if K = 0, we are back to performmg the EM. Since J is relatively inexpensive
to compute, this option with moderate K is an attractive approach.

To see how the projection applies, consider Example 1 in Section 4. From the third
iteration:

and so

43479
A-N'=LI;'= 3—%% = 1153442

and 69 = 0¥ +1-153442d® = 0-6268216 which is closer to 6 than is 0.
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In this example the expected X-information (420-87)—is 3-2 per cent smaller than I ,—and
the projected 6 value obtained using it is further from the MLE than 6. The discrepancy is
due to automatic conditioning on ancillary statistics by the observed, but not expected
information. In the full-data problem, X, is ancillary, with an expected value (for
X+ ... +X5=197) of 197/2 = 98-5, irrespective of 6. Thus, while the expected number of
observations giving information to 6 is 98-5, there were (at the fourth iteration) 1016
(= 197— X)) pseudo-observations doing so. The larger pseudo-sample size is more appro-
priate for this set of data than the a priori expected value of 98-5. It should be stressed, however,
that the effective sample size is only 88-:3. For amplification of these issues see Efron and
Hinkley (1978).

In the second example,

. ( 04336 00798 —0-1091 )
J = 0-0852  0-3817 —0-1094
—0-9040 —0-8482 04350

which can be used in the projection approach. The eigenvalues of J are
(0-9018, 0-3248, 0-0237),

and the largest of these determines the geometric rate of convergence of the EM algorithm (see
(5.1), Louis et al., 1976; Sundberg, 1976 and Dempster et al., 1977).

APPENDIX
Derivation of (3.1) and (3.2)
We have

A*(y,0) = log {fy(y|0)} = log UR Jx(x| O)d#(x)}-

Therefore, with A*’ indicating the gradient

S*(y,0) = A*'(y,0) = f J'(x10)du(x) / Lf (x16)du(x),

and by multiplying and dividing the integrand in the numerator by fy(x | 6), we have (3.1). For
(3.2) take an additional derivative to obtain the matrix:

A*(y, 0) = { f fx(x|6)du(x) / j Jx(x16) du(X)}—S*(y, 0) S**(, 0).

By multiplying and dividing by fy(x|0) as before we obtain
A¥(y,0) = Eo[ fx(X10)/ fx(X10)| X € R]1—5*(y,0) S*(y, 0),
which can be written
Eo[2"(X,0)| X € R]+Eo[S(X,0)ST(X,0)| X € R]—S*(y,0)S*"(y,0).

The negative of this expression is (3.2).
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