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ABSTRACT A Monte Carlo method called sequential im-
putation is proposed for multilocus likelihood computations.
This method is most useful in mapping situations where the
data consist of large pedigrees with substantial missing infor-
mation and it is desirable to perform linkage analysis utilizing
data from many polymorphic markers simultaneously. A ped-
igree example with 155 individuals, 9 loci, and 155,520 hap-
lotypes is used for illustration.

In mapping disease loci or genetic markers, often many
linked loci have to be handled simultaneously. Efficient
algorithms for calculating likelihoods are available for large
pedigrees with a small number of loci (1-5) and for small
pedigrees with a large number of loci (6). However, for large
pedigrees with a large number of loci, especially those that
have substantial missing data, exact evaluation of a single
likelihood value can be prohibitive because of memory
requirements and computing time. This difficulty was noted
explicitly by investigators studying disorders having late age
at onset (7, 8). A Monte Carlo method called sequential
imputation (9, 10) is proposed here to handle problems of this
type. Loci are processed one, or a few, at a time to reduce the
computational burden. Instead of evaluating likelihood val-
ues individually, the whole likelihood surface can sometimes
be obtained by using results from a single simulation run.
Also, unlike some other methods (6), sequential imputation
can incorporate genetic interference with no extra difficul-
ties.

Sequential Imputation

In multilocus linkage problems, if, for each person and each
locus, it is known exactly what allele is inherited from the
father and what allele is inherited from the mother, the
likelihood function is often trivial to evaluate. We refer to this
information, which is desirable but often not available in its
entirety, as missing data and denote it by z. The observed
data, denoted by y, usually include genotypes of each indi-
vidual marker for some members of the pedigree. An indi-
vidual may be typed for some, but not all, of the marker loci.
In disease mapping, y will also include available disease
phenotypes of the members. The combination (y, z) is re-
ferred to as the complete data.

Let 6 be the unknown parameter vector so that the likeli-
hood function is L(6) = pe(y). In disease mapping, 6 is often
a scalar that denotes the location of the disease gene relative
to a set of markers whose locations are assumed to be known.
In more complex situations, § may also incorporate other
parameters such as marker allele frequencies and parameters
relating the disease genotype and phenotype. In linkage
mapping of markers, 0 is a vector that denotes the relative
locations among a collection of markers.

Let{y1,...,yntand{z1,. . . , 2,} be some decomposition
of y and z. At this time, assume that there are n loci so that
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fort=1,...,n, y.and z,are, respectively, the observed and
missing data on locus ¢. Other decompositions will be con-
sidered later. Note that the labels ¢ (¢ = 1, . . . , n) do not
necessarily correspond to the physical ordering, assumed or
real, of the loci. Given a certain value of 6, sequential
imputation is a method that allows us to obtain an unbiased
estimate of L(6) and generate weighted samples of z = {z1,
., zn} from the conditional distribution po(zly). These
weighted samples can then be used to estimate likelihoods of
other parameter values. The method involves first drawing z
from p(z1| y1) and computing wy = pe(y1). Then the following
two steps are applied for ¢ = 2, . . ., n, in increasing order
of t:
(i) Draw z* from the conditional distribution pe(zy1, 24,
., ¥i-1, 2¥-1, y»). Notice that the z} values have to be
drawn sequentially since each z% is drawn conditioned on the
previously imputed missing parts z3%, . . . , z§-1.

(ii) Sequentially compute the predictive probabilities
po(ydyL, 24, . - ., ¥e-1, 2%-1) and wy = weape(¥i y1, 24, - - -
Yi-1, 2%-1). Let w = wy so that w = pa(y)IIf=2 pe(ydy1, 23,

. Ye-1, T-1).

Given the decompositions described above, for each ¢,
steps i and ii are done simultaneously and involve a single
locus computation (11-13). This type of computation is
commonly referred to as peeling. Steps i and ii are done
independently m times. The choice of m, the number of
imputations, is discussed later. Denote the results by z*(1),
2*(Q), . . . ,z*(m)and wQl), . . . ,w(m), where z*(j) = (z4(j),

L, %) forj =1, ..., m. Note that z*(j) is sampled
from a distribution, denoted by p¥(zly), which is different
from the actual conditional distribution pe(zly). It can be
demonstrated that

_Poly, 2() _ pe(j)ly)
piz()ly)  p¥()ly)

and as a consequence Ep+[w(j)] = pe(y) (see Appendix I). It
follows that an unbiased estimate of L(6) = pe(y) is

w(j) Po(y),

. 12
L(o) =% =— 2, w(j).
m j=1

Furthermore, if the simulations are performed based on a
parameter value 6, then, for any other parameter value 6,

1 & Do, (y’ Z(j))

L) == 2 ————w()) [
m j=1pq (¥, 2(j))

is an unbiased estimate of L(61) = pe(y) (see Appendix II).

Since both pg/(y, z(j)) and pe(y, z(j)) are complete data

likelihoods, they can be easily computed. It is noted that L6

is only expected to be a good estimate of the true likelihood

Abbreviations: IBD, identity by descent; MODY, maturity onset
diabetes of the young; CEPH, Centre D’Etude du Polymorphisme
Humain; EM, expectation-maximization.
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if 6; and 6 are not too far apart; i.e., they do not correspond
to two very different positions for the disease gene.

Efficiency of the Method

The coefficient of variation of w, C[w], measures the relative
standard error of w as an estimate of L(6). Based on the delta
method, C[w] can be shown to be approximately the standard
deviation of log.(w). Changing from the natural logarithm to
the logarithm to the base 10, the standard error of log;o(w) as
an estimate of the log-likelihood logioL(0) is approximately
logio e X C[w] = 0.43 X C[w]. We have

O] = —= ()] = —m )
1= O T Bl
1 Var,{[w(j)]

“\m P

Its sample estimate is

i) = — =

——Cw(j)] = —=—,

Nm TR mw

where s,, denotes the sample standard deviation of the w(j)
values. For C[w] to be some desirable value 8, m, the number
of imputations, needs to be 62 X (C[w(j)])?. In other words,
the efficiency of the method is inversely proportional to
(CIw(j)])?. For example, suppose we want C[#] to be around
0.2. Basing our decision on the simulated samples, this
implies that m, the number of imputations, needs to be about
25 X (s2/%?).

Sequential imputation is a form of importance sampling.
The distribution p ¥(-|y) from which the z* values are drawn is
called the trial distribution, the ratio po(z*(j)|y)/p §(z*(j)ly) is
the importance sampling weight. So w(j) is the importance
sampling weight multiplied by the unknown constant py(y). It
follows that (C[w(j)])? = Var,+[pe(z*(j)| y)/p¥z*(j)| y)] and
is a measure of distance between py(zly) and p §(z*|y). To keep
this distance small, it is desirable to have p3(-ly) as close to
po(ly) as possible by choosing an appropriate decomposition
of y and z. In general, choosing an optimal decomposition
requires making compromises between the ease of perform-
ing steps i and ii, and keeping C[w(j)] small. In the previous
section (Sequential Imputation), for simplicity, we consid-
ered a special decomposition of the observed data y and the
missing data z; i.e., y, and z, denote, respectively, the
observed and missing data of a single locus ¢. We now present
afew modifications of the basic procedure that can reduce the
variation of w(j) considerably without necessarily increasing
difficulties in computation.

Note that pe(zly) can be written as pe(z1|y)IT=2pe(zdy, 21,

. » 2Zi-1)-'So drawing z% from pe(zi]y) is obviously prefer-
able to drawing z% from p(zi| y1) if the former is feasible.
While this is not the case, it suggests that when drawing z%,
we should try to condition on more information if possible.
For each locus and each parent-offspring pair, define an
identity by descent (IBD) variable as the indicator of whether
the allele inherited by the offspring came from the grandfa-
ther or the grandmother. Often some of the IBD variables can
be deduced from the observed data y. Here we redefine y; to
include the observed data on the first locus processed plus the
IBD variables of other loci, which can be deduced from the
observed data. Conditioning on these IBD variables has
virtually no effect on the amount of computations needed to
perform steps i and ii.

Apart from the deducible IBD variables, it had so far been
assumed that y; consists of observed data on a single locus.

Cwl =
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This is not necessary and, indeed, it is usually preferable to
incorporate more than one locus into y;. Note that the first
step of sequential imputation involves computing pe(y;) and
drawing z%(j),j = 1, . . . , m from pe(z1| y1). This requires
peeling the loci incorporated in y; jointly, but the key is that
a single peel is needed for all m imputations. As long as this
first peel can be practically performed, y; should incorporate
as many loci as possible. This will decrease the coefficient of
variation of the weights and as a consequence can reduce the
overall computing time. :

In the previous section (Sequential Imputation), z is de-
fined to include every locus and every member in the
pedigree. In some cases, some members of the pedigree are
typed for some, but not all, of the loci. For a particular person
and locus, we call the missing allele data ignorable if neither
the person nor any of his/her descendants is typed for that
locus. Imputing ignorable data will only add noise and inflate
the variation of the weights. Hence, foreacht,t =1, ...,
n, we redefine z, to include only data that are not ignorable.

Order of Imputation and Location Scores

The order in which the loci are processed also affects the trial
distribution and the variance of w(j). The best order is one
that minimizes the weight variance. A simple rule for choos-
ing a good processing order is to start with loci that have the
least amount of missing information among the nonignorable
data. Thus, marker loci with more untyped individuals who
are not ignorable should be processed late. For two marker
loci that are typed in the same individuals, the more infor-
mative one, usually the one with more alleles, should be
processed first. These are however only guidelines, and
sometimes experimentation with different orders is neces-
sary.

Location scores for a disease gene, the differences between
the logjo likelihoods of specific gene locations and the logy
likelihood of a position unlinked to the markers, can some-
times be estimated by a simple strategy. Set y, to be the
observed disease data and process the markers first based on
the above criteria. The average of the weights before pro-
cessing the disease data, W,—1 = m™! 2 w,_1(j), is an
unbiased estimate of p(y1, . . . , yn—1). Hence w,=1 X p(yn)
is an unbiased estimate of the likelihood for a locus unlinked
to the markers. Then process the disease locus by placing it
at various locations linked to the marker loci. This approach
has the advantage that one set of marker imputations can be
used to estimate likelihoods of all locations (14). Moreover,
since the likelihood estimates at different locations result
from a single simulation run, they tend to be positively
correlated. In consequence, standard errors of estimates of
likelihood ratios among different locations are lowered. Be-
cause of these advantages, this strategy of processing the
disease locus last is applied to the example presented below.
However, recent experience with other data suggests that it
is sometimes necessary to process the disease locus first,
maybe jointly with one or two’ markers. This alternative
strategy, even though it requires multiple simulation runs for
the different gene locations, is preferred when the disease
status is available for many individuals in the upper genera-
tions while marker genotypes of the same individuals are
missing. This can occur, for example, when a highly pene-
trant disease can be diagnosed in three or more generations
at the top of the pedigree for whom marker data are unavail-
able. Also, if the disease allele is very rare in the population,
disease genotypes of many individuals in the upper genera-
tions, even if not available directly, can often be deduced
with little uncertainty.

Whether the disease locus is processed first or last, it is
usually enough to apply sequential imputation to a single
location, probably in the middle, within each interval
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spanned by two physically adjacent markers. Eq. 1 can then
be applied to approximate the likelihoods for other locations
in the interval.

An Example

The RW pedigree (Fig. 1) segregating for maturity onset
diabetes of the young (MODY) is used to illustrate different
properties of sequential imputation. The form of MODY
segregating in this pedigree has been linked to markers on 20q
(15). Note that the diagnostic information summarized in Fig.
1 is derived from both the clinical diagnosis of MODY and
from biochemical studies. Thus, some individuals who do not
have clinical disease are considered affected in these analy-
ses. It is understood that results of the analyses are depen-
dent on the diagnostic assumptions made. The analyses here
are not presented to justify any particular diagnostic criteria
or localization of the MODY locus within this region but
strictly as an illustration of the use of sequential imputation.
An unaffected branch of the pedigree is included because of
the additional marker information it provides for untyped
members of the upper generations.

Of interest is the location of the MODY gene relative to
eight markers, ADAI (5 alleles), ADA2 (2 alleles), L127 (6
alleles), $22 (3 alleles), S4 (2 alleles), RM292 (12 alleles), GPR
(6 alleles), and GSA (3 alleles), all on the long arm of
chromosome 20. Over half the people in the pedigree are not
typed for at least one of the eight markers, and most members
of the top two generations have all the marker data missing.
The recombination probabilities between the eight markers
are assumed to be 0 between ADAI and ADA2, 0.034 between
ADA and L127, 0.050 between L127 and $22, 0.121 between
522 and $4, 0.011 between S4 and RM292, 0.111 between
RM292 and GPR, and 0.132 between GPR and GSA. The
locations of ADA, L127, S22, S4, GPR, and GSA are based
on information from Centre D’Etude du Polymorphisme
Humain (CEPH) families (16). The position of RM292 was
estimated from the RW pedigree data alone given the posi-
tions of the other markers. Three analyses are run on the data
set to examine the properties of sequential imputation. For all
the analyses presented, the assumption of no interference is
made, but this is not a limitation of the method. Genetic
distances are measured relative to ADA. Computations are
performed assuming that MODY is a dominant trait, the

= ®
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FiGc. 1. RW pedigree. Affected members of the family are de-
noted by solid squares (males) and solid circles (females).
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penetrance is 0.95, there are no sporadic cases, and the
population frequency of the disease allele is 0.0001.

The first analysis uses sequential imputation to calculate a
series of three-point location scores for the position of the
MODY locus between pairs of adjacent markers (four points
for the interval between the two ADA markers and L127).
This means that location scores within a marker interval are
computed using only data on the flanking markers. This is
done because exact computations can be performed for
comparisons. For each of the six intervals defined by the
markers, a sequential imputation run of m = 2000 imputations
was done. For each run, the MODY locus was placed at four
locations: unlinked to the markers, in the middle of the
interval, and at the ends of the intervals on top of the markers.
Initially, except for one interval, the processing order starts
with the marker with the most alleles and finishes with
MODY. The one exception is the ADA-LI27 interval, with
the processing order set to ADAI, L127, ADA2, and finally
MODY. ADAI was processed before L127 because signifi-
cantly more people were typed for ADAI than for L127. Two
intervals, $22-S4 and GPR-GSA, had large coefficients of
variation in the initial runs, and additional runs were per-
formed. For §22-54, the likelihoods were calculated from
simulations processing MODY first. With GPR-GSA, the
likelihoods were calculated from a run switching the pro-
cessing order of GPR and GSA. Fig. 2 shows the estimated
location scores for the whole region together with some exact
location scores calculated using the LINKMAP program of the
LINKAGE package (5). Sequential imputation is apparently
performing well here.

The second analysis utilizes data from all eight markers
simultaneously. Location scores for the MODY gene are
calculated assuming the CEPH locations for the markers.
This is hence a nine-point analysis with 155,520 haplotypes.
The markers are processed in the order of RM292, ADAI,
Li127, GPR, S22, GSA, ADA2, 54. Then the disease gene is
processed at seven different locations: unlinked to the mark-
ers and at the midpoints of the six intervals defined by the
markers. A total of m = 10,000 imputations are performed.
The results are presented in Fig. 3A. Although it can only be
clearly seen in the interval S4-RM292, there are three curves
in each marker interval. The curve in the middle corresponds
to the Monte Carlo estimates of the location scores. The top
curve and the bottom curve correspond, respectively, to the
estimate plus and minus two standard errors. Hence, for each
location, the top and bottom values give an approximate 95%
confidence interval for the actual location score. The fact that

ADA L1 S4RM292 GPR GSA

27 S22
[Te)
Sl Wt
e

o | b
N\\m |

Location Score

0.0 0.1 0.2 0.3 0.4 0.5
Distance (M)

F1G.2. Three- and four-point location scores for the MODY locus
as estimated by sequential imputation (line) and calculated by
LINKMAP (#). The locations of the markers are denoted by the
vertical lines.
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Fi1G. 3. Estimated nine-point location scores for MODY with +2
SE bounds. (A) Under the CEPH distances. (B) Under distances

estimated by the Monte Carlo expectation-maximization (EM) algo-

rithm.

the three curves are nearly indistinguishable from each other
indicates that the standard errors are very small. Note that,
compared to the three-point location scores, the interval with
the highest location score shifted from L127-$22 to S4-
RM?292. This indicates the importance of utilizing all marker
data simultaneously.

One limitation of exact calculations is that changing pa-
rameters such as distances between the markers requires a
new set of calculations. In contrast, with sequential imputa-
tion, likelihoods under different marker distances can be
computed from the same set of simulations by applying Eq.
1. Because the CEPH data for chromosome 20 have not been
corrected for typing errors (17), we obtain maximum likeli-
hood estimates of the marker distances based on the RW
family data by implementing a Monte Carlo version of the EM
algorithm, which also uses sequential imputation (18). These
estimated recombination probabilities are 0 between ADAI
and ADA2, 9.5 X 10712 between ADA and LI27, 0.028
between L127 and S22, 0.038 between $22 and S4, 0.028
between S4 and RM292, 0.130 between RM292 and GPR, and
0.066 between GPR and GSA. Using the same complete data
sets and weights generated for the second analysis, location
scores for the MODY locus are recalculated based on these
new marker distances. As shown in Fig. 3B, the likelihood is
again maximized between RM292 and GPR at a distance of
0.0267 morgans from the RM292 locus. However, the differ-
ence between the maximum location score in the RM292-
GPR interval and the location score at $22 has increased from
0.77 to 1.74, which is nearly a factor of 10 on the likelihood
scale. Also, while still acceptable, the standard errors here
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are substantially larger. This is to be expected as the likeli-
hood calculations are being done at a greater distance from
the simulation conditions than in the previous analysis.

The nine-point sequential imputation run was performed
on a Sun Sparc 10 workstation with 32 megabytes of random
access memory (RAM). It took roughly 35 central processing
unit hours to run, or =13 sec per imputation. (It is noted that
the part of the program that performs peeling has not yet been
optimized for speed.) With such a high number of haplotypes,
exact computations cannot be performed utilizing all the data
simultaneously. [In general, for pedigrees without loops,
memory requirement is proportional to (number of haplo-
types)* and computing time is proportional to (number of
haplotypes)S.] Indeed, other investigators working to map the
MODY locus in this region reported a multipoint location
score map containing some of these same markers typed in
this same pedigree (7). In these analyses, four-point location
scores were calculated by moving MOD Y through intervals of
three loci at a time. However, in order to do four-point
likelihood calculations, the numbers of alleles were reduced
and the pedigree was split. These actions led to a maximum
multipoint location score smaller than the highest two-point
logarithm of odds score.

Discussion

Because of the limitations of existing computer programs and
algorithms that do exact computations of likelihoods, inves-
tigators often have to reduce the number of loci and the
number of alleles per locus in their analyses (7, 8). This leads
to loss of information and sometimes can create bias. In
addition, because of the inefficiency of computing likelihoods
point by point, careful analysis of the data could be discour-
aged. The method of sequential imputation introduced in this
paper can reduce considerably the burden for multipoint
computations and therefore enables more complete analyses,
including, for example, assessing the sensitivity of the results
to alternative marker allele frequencies or marker distances.
Eq. 1 can be applied for most of these purposes, but a note of
caution is needed. As mentioned earlier, when 6; and 6 in the
formula are very far apart, the likelihood estimate can be very
inaccurate. For example, imputations from one simulation run
can be used to find the direction of the effect of modifying the
allele frequencies, but the actual estimates of the likelihoods
may not be very good if the ‘‘new’’ allele frequencies are very
different from those used to perform the simulations.

Sequential imputation is one method to generate multiple
samples of the missing data conditioned on the observed data.
Alternative methods include the Gibbs sampler (19, 20) and the
related Metropolis algorithm (14). Instead of generating inde-
pendent weighted samples, these methods, based on Markov
chain theory, produce correlated samples with equal weights.
Because of the special character of pedigree analysis (20),
these methods can sometimes be very inefficient because of
high correlations among samples. Moreover, while sequential
imputation gives direct estimates of likelihoods, these meth-
ods only give estimates of likelihood ratios between other
values of the parameter and the value used for performing the
imputations. Estimates of the likelihood ratios can have very
large variances if we are comparing different orderings of the
loci. It is however noted that some of the problems being
handled by Gibbs sampling, such as inbred pedigrees with
many loops and complex traits, do not fall into the area of
applications of sequential imputation.

The efficiency of sequential imputation depends on the
coefficient of variation of the importance sampling weights.
Earlier, a number of ways to improve efficiency were pro-
posed. All were implemented for the analysis of the MODY
pedigree, except for the capability of processing more than
one locus at a time. Our recent experience with other data
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makes it clear that this capability will greatly increase the
efficiency of the method when marker data are missing for
three or more generations at the top of the pedigree. In another
direction, a locus can be split into two artificially. For exam-
ple, a locus with 12 alleles can be considered as two loci right
on top of each other with 4 and 3 alleles each. The split can be
chosen so that one of these half-loci carries more information
than the other half and is processed first. Moreover, two
halves of two different loci can be combined during processing
to reduce the variation of the weights. Indeed, since only a
single peel is performed to process y; for all m imputations, one
strategy is to have y; include all loci by reducing each locus to
2 or 3 alleles. Sequential imputation can then be used to
incorporate the residual information from each locus. Finally,
although the current computer program only handles pedi-
grees without loops, sequential imputation can in theory be
used for pedigrees with a small number of loops.

Appendix I
Note that z*(j) is drawn from the density
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