
Stat 221: Statistical Computing Methods
Spring, 2004

Solution keys of Assignment 1 Due on Mar. 3, 2004

1.

– Based on the definition of Newton’s method, it is not hard to show the given form.

– The right hand side of the iterative form has a minimum at xn−1 = c1/m and the minimum is
c1/m where c > 0. Thus, xn ≥ c1/m for all xn−1 > 0.

– Since xn−1 ≥ c1/m, we have

1− 1
m

+
c

mxm
n−1

≤ 1− 1
m

+
c

mcm/m
= 1,

which leads to xn ≤ xn−1.

– Letting g(xn−1) = xn − xn−1, we can show that g′(xn−1) < 0 whenever xn−1 ≥ c1/m, i.e., xn

monotonely decrease to c1/m, which is the minimum value.

– Based on the first result, x1 will be greater than c1/m when 0 < x0 < c1/m, but thereafter, xn

will monotonely decrease to c1/m because of x1 > c1/m.

2.

(a) In order to converge a positive solution of the equation, |f ′(x)| < 1 should be satisfied. After
setting g(x) = 3x2 − ex at the first step, we know the first solution of this equation will be
between 0 and 1 because of g(0) < 0 and g(1) > 0, and the second solution between 3 and 4
because of g(3) > 0 and g(4) < 0. In the vicinity of both roots, however, it is easy to confirm
|f ′(x∞)| is greater than 1.

Thus, we let f(x) = cg(x)+x, then try to find a value of c such that −2 < cg′(x) < 0 is satisfied.
First, since g′(x) is greater than 0 in the vicinity of the first solution, we have 0 < g′(x) < −2/c

where c is negative, which means c should be between −1/(3 log 6− 3) and 0 because g′(x) has
an upper bound of (6 log 6 − 6). As long as c is set to a number somewhere in this interval,
we guarantee that fixed-point iteration will converge to a positive (first) solution on an interval
that satisfies g′(x) > 0. Finding the interval gives birth to another non-linear equation problem,
but this can be done easily by using the bisection method. For instance, when we set c = −1/4,
the solution to this equation is x∗ = 0.9100076 and the corresponding interval on which the
fixed-point iteration converges is (0.2044814, 2.833148).

Second, g′(x) is less than 0 in the vicinity of the second solution, and thus we have −2/c <

g′(x) < 0 where c is positive. Because g′(x) does not have a lower bound, the interval that
converges to a positive (second) solution will hinge on the value of c. When we set c = 1/100,
the solution to this equation is x∗ = 3.733079 and the corresponding interval on which the
fixed-point iteration converges is (2.833148, 5.449743).

(b) For our first guess, we let f(x) = 2x− cos x after setting g(x) = x− cos x. However, |f ′(x)| < 1
cannot be satisfied for any value of x. Thus, we again let f(x) = cg(x) + x, then try to find c

that satisfies the proposition. It is easy to see when c ∈ (−1, 0), |f ′(x)| < 1 is always satisfied
for all x except odd multipliers of π plus π/2. The solution to this equation is x∗ = 0.7390851.
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3.
The likelihood function can be viewed as

n∏
i=1

{(
pf(ti)

)zi
(
1− pF (ti)

)1−zi
}

,

then the loglikelihood is given by

` =
n∑

i=1

{
zi log

(
pf(ti)

)
+ (1− zi) log

(
1− pF (ti)

)}
.

Thus, the first and second derivatives are given by

∂`

∂p
=

∑n
i=1 zi

p
−

n∑
i=1

(1− zi)F (ti)
1− pF (ti)

∂2`

∂p2
= −

∑n
i=1 zi

p2
−

n∑
i=1

(1− zi)F (ti)2(
1− pF (ti)

)2 .

Then we find a solution that satisfies `′(p) = 0 by using Newton-Raphson and bisection as follows:

risk <- read.table("c:/Splus/Data/risk.dat",header=T)

z <- (risk[,2]-40)/15 # We standardize the data.

ell.f <- function(p){ sum(risk[,1])/p-sum((1-risk[,1])*pnorm(z)/(1-p*pnorm(z))) }

ell.s <- function(p){ -sum(risk[,1])/p^2-sum((1-risk[,1])*pnorm(z)^2/(1-p*pnorm(z))^2) }

### Bisection ###

a <- .4

b <- .6

ell.f(a)*ell.f(b) # Is this less than 0?

while(abs(a-b)>1.0e-8){

c <- (a+b)/2

if(ell.f(c)==0){

print("optimal value!")

break

}

else{

if(ell.f(a)*ell.f(c)<0) b <- c

else a <- c

}

}

c # 0.5058496

### Newton-Raphson ###

x <- .4

while(abs(ell.f(x))>1.0e-8) x <- x - ell.f(x)/ell.s(x)

x # 0.5058496

sqrt(-1/ell.s(x)) # 0.0704326 which is the standard error of p.hat.
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4.
For any non-negative integers n and m where n > m,

‖Bn −Bm‖ =

∥∥∥∥∥
n∑

k=m+1

Ak

k!

∥∥∥∥∥ ≤
n∑

k=m+1

‖Ak‖
k!

≤
n∑

k=m+1

‖A‖k

k!
<

∞∑
k=m+1

‖A‖k

k!

and the right-hand side will converge to 0 as m → ∞. Thus Bn is a Cauchy sequence, so it will
converge in the reals.

In particular, if we assume A is a p × p symmetric matrix, then by an eigen decomposition A

can be decomposed into QDQ−1 where D is a diagonal matrix whose entries are eigenvalues and Q

is a matrix of corresponding eigenvectors. Thus, the given series can be rewritten as

Bn =
n∑

k=0

Ak

k!
= Q

( n∑
k=0

Dk

k!

)
Q−1 = Q

∣∣∣∣∣∣∣∣∣∣∣

∑
k

dk
1

k! 0 · · · 0

0
∑

k
dk
2

k! · · · 0
...

...
. . .

...

0 0 · · ·
∑

k

dk
p

k!

∣∣∣∣∣∣∣∣∣∣∣
Q−1,

and as n →∞ this will converge to

Q

∣∣∣∣∣∣∣∣∣∣
ed1 0 · · · 0
0 ed2 · · · 0
...

...
. . .

...
0 0 · · · edp

∣∣∣∣∣∣∣∣∣∣
Q−1 ≡ QeDQ−1.

5.

– 1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖ · ‖A−1‖ = cond(A).

– cond(A−1) = ‖A−1‖ · ‖A‖ = ‖A‖ · ‖A−1‖ = cond(A).

– cond(cA) = |c| · ‖A‖ · |c−1| · ‖A−1‖ = ‖A‖ · ‖A−1‖ = cond(A).

– cond2(U) = ‖U‖2 · ‖U−1‖2 =
√

ρ(U>U)
√

ρ(U−>U−1) =
√

ρ(U>U)
√

ρ(UU>) = 1.

– cond2(AU) = ‖AU‖2 · ‖U−1A−1‖2 = ‖U>A>‖2 · ‖U−1A−1‖2 = ‖A>‖2 · ‖A−1‖2 = cond2(A).

– cond2(UA) = ‖UA‖2 · ‖A−1U−1‖2 = ‖UA‖2 · ‖U−>A−>‖2 = ‖A‖2 · ‖A−>‖2 = cond2(A).
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