STAT 221: STATISTICAL COMPUTING METHODS
Spring, 2004

Solution keys of ASSIGNMENT 1 Due on Mar. 3, 2004

2.
(a)

— The right hand side of the iterative form has a minimum at z,_1 = ¢

— Letting g(x,—1) = ©p, — p—1, we can show that ¢'(x,,—1) < 0 whenever z,_; > ¢

— Based on the definition of Newton’s method, it is not hard to show the given form.

/™ and the minimum is

/™ where ¢ > 0. Thus, z, > ¢/ for all z,,_1 > 0.

— Since z,_1 > /™, we have
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which leads to z,, < x,_1.
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monotonely decrease to ¢'/™, which is the minimum value.

— Based on the first result, z; will be greater than ¢'/™ when 0 < z¢ < ¢'/™, but thereafter, z,,

1/m

will monotonely decrease to ¢ because of z1 > ¢!/™.

In order to converge a positive solution of the equation, |f’(x)] < 1 should be satisfied. After
setting g(x) = 322 — €% at the first step, we know the first solution of this equation will be
between 0 and 1 because of g(0) < 0 and g(1) > 0, and the second solution between 3 and 4
because of g(3) > 0 and g(4) < 0. In the vicinity of both roots, however, it is easy to confirm
|f'(2s0)]| is greater than 1.

Thus, we let f(z) = cg(x)+x, then try to find a value of ¢ such that —2 < c¢¢’(z) < 0 is satisfied.
First, since ¢’(z) is greater than 0 in the vicinity of the first solution, we have 0 < ¢'(z) < —2/c
where ¢ is negative, which means ¢ should be between —1/(3log6 — 3) and 0 because ¢'(x) has
an upper bound of (6log6 — 6). As long as ¢ is set to a number somewhere in this interval,
we guarantee that fixed-point iteration will converge to a positive (first) solution on an interval
that satisfies ¢’(«) > 0. Finding the interval gives birth to another non-linear equation problem,
but this can be done easily by using the bisection method. For instance, when we set ¢ = —1/4,
the solution to this equation is z* = 0.9100076 and the corresponding interval on which the
fixed-point iteration converges is (0.2044814, 2.833148).

Second, ¢'(x) is less than 0 in the vicinity of the second solution, and thus we have —2/c¢ <
g'(xz) < 0 where c is positive. Because ¢'(x) does not have a lower bound, the interval that
converges to a positive (second) solution will hinge on the value of c. When we set ¢ = 1/100,
the solution to this equation is z* = 3.733079 and the corresponding interval on which the
fixed-point iteration converges is (2.833148, 5.449743).

For our first guess, we let f(x) = 2z — cosz after setting g(z) = x — cosz. However, |f'(z)| <1
cannot be satisfied for any value of x. Thus, we again let f(x) = cg(z) + z, then try to find ¢
that satisfies the proposition. It is easy to see when ¢ € (—1,0), |f/(z)] < 1 is always satisfied

for all z except odd multipliers of 7 plus 7/2. The solution to this equation is * = 0.7390851.



3.

The likelihood function can be viewed as

{(r@))™ (1 =pF()' ™},

1

n
1=

then the loglikelihood is given by
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= {Zi log (pf(t:)) 4+ (1 — z;)log (1 — PF(ti))}
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Thus, the first and second derivatives are given by
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Then we find a solution that satisfies ¢'(p) = 0 by using Newton-Raphson and bisection as follows:

risk <- read.table("c:/Splus/Data/risk.dat",header=T)
z <- (risk[,2]-40)/15 # We standardize the data.

ell.f <- function(p){ sum(risk[,1])/p-sum((1-risk[,1])*pnorm(z)/(1-p*pnorm(z))) }
ell.s <- function(p){ -sum(risk[,1])/p~2-sum((1-risk[,1])*pnorm(z) "2/ (1-p*pnorm(z))~2) }

### Bisection ###
a <- .4
b <- .6
ell.f(a)*ell.f(b) # Is this less than 07
while(abs(a-b)>1.0e-8){
c <= (a+b)/2
if (ell.f(c)==0){
print("optimal value!")
break
}
elseq{
if(ell.f(a)*ell.f(c)<0) b <- ¢

else a <- ¢

}
c # 0.5058496

### Newton-Raphson ###

x <- .4

while(abs(ell.f(x))>1.0e-8) x <- x - ell.f(x)/ell.s(x)
x # 0.5058496

sqrt(-1/ell.s(x)) # 0.0704326 which is the standard error of p.hat.



4.

For any non-negative integers n and m where n > m,
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”Bn - Bm” =

and the right-hand side will converge to 0 as m — oo. Thus B, is a Cauchy sequence, so it will
converge in the reals.

In particular, if we assume A is a p X p symmetric matrix, then by an eigen decomposition A
can be decomposed into QDQ~! where D is a diagonal matrix whose entries are eigenvalues and Q

is a matrix of corresponding eigenvectors. Thus, the given series can be rewritten as
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and as n — oo this will converge to
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- 1=|I]| = [AA7Y| < [A[| - [|[AH]| = cond(A).

— cond(A™Y) = [|A7H] - [[A]] = [[A]| - [A7!| = cond(A).

— cond(cA) = [c| - [|A]l - [e7H] - [|[ATH]| = [|A]] - [A7H]| = cond(A).

= condy(U) = |[Ullz - [U 2 = /p(UTU)/p(U=TU) = /p(UTU)/p(UUT) = 1.

- condy(AU) = AU}z - U A7 o = [[UTAT[|2 - [[UTT A7 |2 = [AT ][z - [|A7![|2 = cond(A).

- condy(UA) = [UAl2 - [ATU 2 = [[UA[l2 - [UT ATz = [|All2 - [[A™ T[|2 = conda(A).



