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Target tracking example 

Filtering: 1:t tX Y� �� � (main interest) 

Smoothing: 1: 1:t tX Y� �� � (also given with SIS) 

However as we have seen, the estimate of this 
distribution breaks down when t gets large due 
to the weights becoming degenerate (if we don’t 
resample). 

If we resample, most of the values sampled for 
1X  will disappear when t gets large (related to 

the weight breakdown). 

So SIS isn’t useful for all problems. 

 

Gibbs sampling 

Special case of Markov Chain Monte Carlo 
(MCMC) 

Instead of generating independent samples, it 
generates dependent samples via a Markov 
chain. 

1 2 3X X X→ → →� 

Useful for a wide range of problems. 
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Popular for Bayesian analyses, but is a general 
sampling procedure.  For example, it can be 
used to do smoothing in the target tracking 
example. 

Similar to SIS in that the random variable X is 
decomposed into { }1 2, , , kX X X X= �  and each 
piece is simulated separately. 

However the conditioning structure is different.  
When sampling jX , it is drawn conditional on 
all other components of X. 

 

Gibbs sampler 

A) Starting value: { }0 0 0 0
1 2, , , kX X X X= �  

 Picked by some mechanism 

B) Sample { }1 2, , ,t t t t
kX X X X= �  by 

 1) 1 1 1
1 1 2 3~ , , ,t t t t

kX X X X X− − −� �
� ��  

 2) 1 1
2 2 1 3~ , , ,t t t t

kX X X X X− −� �
� ��  

 … 
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 j ) 1 1
1 1 1~ , , , , ,t t t t t

j j j j kX X X X X X− −
− +

� �
� �� �  

 … 

 k ) 1 1~ , ,t t t
k j kX X X X −

� �
� ��  

Under certain regularity conditions, the 
realizations 1 2 3, , ,X X X � form a Markov chain 
with stationary distribution [ ]X . 

Thus the realizations can be treated as 
dependent samples from the desired 
distribution. 

Example: (Nuclear pump failure) 

Gaver & O’Muircheartaigh (Technometrics, 
1987) 

Gelfand & Smith (JASA, 1990) 

Observed 10 nuclear reactor pumps 

Counted the number of failures for each pump 
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Pump Failures ( is ) Obs Time ( it ) Obs Rate ( il ) 

1 5 94.320 0.053 

2 1 15.720 0.064 

3 5 62.880 0.080 

4 14 125.760 0.111 

5 3 5.240 0.573 

6 19 31.440 0.604 

7 1 1.048 0.954 

8 1 1.048 0.954 

9 4 2.096 1.910 

10 22 10.480 2.099 

(Obs Time in 1000’s of hours) 

(Obs Rate = Failures / Time) 
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Want to determine the true failure rate for each 
pump with the following hierarchical model 

( )
( )
( )

~ Poisson
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Want to determine 

1) i Sλ� �� � for each pump i = 1, … , 10 

2) Sβ� �� � 

where( { }1 10, ,S s s= � ) 
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Note that both sets of these distributions are 
hard to get analytically. 

Can show that 

( )
( ) ( )
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where { }1 10, ,λ λ λ= � . 

Note that the λ’s are correlated and trying to 
get the marginal for each looks to be 
intractable analytically. 

Run a Gibbs sampler to determine , Sλ β� �� �.  
From this sampler we can get the desired 
distributions Sλ� �� � and Sβ� �� �. 

A possible Gibbs scheme 

Step 1)  Sample ( )1 1 1~ , ,Sλ λ λ β−
� �
� �

 

 … 

Step 10) Sample ( )10 10 10~ , ,Sλ λ λ β−
� �
� �

 

Step 11) Sample ~ ,Sβ β λ� �� � 

where ( ) { }1 1 1 10, , , , ,j jjλ λ λ λ λ− +− = � �  
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Need the following conditional distributions 

( )~ , , ,

1
Gamma ,

1

j j j jj

j
j

S s

s
t

λ λ λ β λ β

α
β

−
� � � �= � �� �

� �
= +� 	� 	+
 �

 

~ ,

1
IGamma 10 ,

i

Sβ β λ β λ

γ α
δ λ

� � � �=� � � �

� �
= +� 	� 	+
 ��

 

This can be gotten from the joint distribution 
by including only the terms in the product that 
contain the random variable of interest 
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e.g. for jλ , which terms above have a jλ  in 
them. 
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Equivalently, you can do this by looking at the 
graph structure of the model by only including 
terms that correspond to edges joining to the 
node of interest. 

e.g. for β, which edges connect with the node 
for β. 

 

 

Example Run: 

α = 1.8 

δ = 1 

γ = 0.1 

n = 1000 
0 lβ =  

λ 

S 

β 
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Pump Mean Median Std Dev 

1 0.0702 0.0668 0.0268 

2 0.1542 0.1363 0.0925 

3 0.1039 0.0988 0.0399 

4 0.1233 0.1206 0.0310 

5 0.6263 0.5805 0.2924 

6 0.6136 0.6040 0.1351 

7 0.8241 0.7102 0.5267 

8 0.8268 0.7129 0.5309 

9 1.2949 1.2040 0.5776 

10 1.8404 1.8121 0.3903 

 

 Mean Median Std Dev 

Beta 0.4372 0.4161 0.1315 
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( )1Cor , 0.302i iβ β + =  
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