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Metropolis – Hastings Algorithm (M-H) 

A general approach for constructing a Markov 
chain that has the desired stationary 
distribution ( ( )j jπ π= ) 

1) Proposal distribution: 

Assume that tX i= .  Need to propose a new 
state with distribution ( )ijq q j i= . 

2) Calculate the Hastings’ ratio 
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3) Acceptance/Reject step 

Generate ( )~ 0,1U U  and set 
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Notes: 

1) Gibbs sampling is a special case of M-H as 
for each step, 
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which implies the relationship also holds 
for a complete scan through all the 
variables. 

2) The Metropolis (Metropolis et al, 1953) 
algorithm was based on a symmetric 
proposal distribution ( ij jiq q= ) 
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So a higher probability state will always be 
accepted. 

3) As with many other sampling procedures, π 
and q only need to be known up to 
normalizing constants as they will be 
cancelled out when calculating the 
Hastings’ ratio. 
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4) Periodicity isn’t a problem usually. 

 For many proposals, 0iiq >  for all i.  Also if 

1ija < , 1 0t tP X i X i+� 	= = >
 � , thus some 

states have period 1, which implies the 
chain is aperiodic. 

5) ij ijq a  gives the 1-step transition probabilities 

of the chain (e.g. its ( )p x y  in the earlier 

notation). 

6) Detailed balance is easy.  Without loss of 
generality, assume that  
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7) The big problem is irreducibility.  However 
by setting the proposal to correspond to a 
irreducible chain solves this. 

 

Proposal distribution ideas: 

1) Approximate the distribution.  For example 
use a normal with similar means and 
variances.  Or use a t with a moderate 
number of degrees of freedom. 

2) Random walk 

( ) ( )q y x q y x= −  

 If there is a continuous state process, you 
could use 

( ); ~y x qε ε= + •  

 For a discrete process, you could use 
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3) Autoregressive chain 

( ) ( ); ~y a B x a z z q= + − + •  

 For the random walk and autoregressive 
chains, q does not need to correspond to a 
symmetric distribution (though that is 
common). 

4) Independence sampler 

( ) ( )q y x q y=  

 For an independence sampler you want q to 
be similar to π. 
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 If they are too different, i iq π  could get very 
small, making it difficult to move from state 
i.  (The chain mixes slowly). 
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5) Block at a time 

Deal with variables in blocks like the Gibbs 
sampler.  Sometimes referred to Metropolis 
within Gibbs. 

Allows for complex problems to be broken 
down into simpler ones. 

Any M-H style update can be used within 
each block (e.g. random walk for one block, 
independence sampler for the next, Gibbs 
for the one after that). 

Allows for a Gibbs style sampler, but 
without the worry about conjugate 
distributions in the model to make 
sampling easier. 

 

Pump Example: 
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Can perform Gibbs on µ and 2σ  but not on λ, 
due the non-conjugacy of the Poisson and log 
Normal distributions. 
 

Step i, i = 1, … , 10 (M-H): 

Sample iλ  from 2,i sλ µ σ,  with proposal 

( )* 2~ logN ,i iλ λ θ  (Multiplicative random walk) 
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( )min ,1ija HR=  
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Step 11 (Gibbs): 

Sample µ from ( )2 2, , , ~ mean,varNµ λ σ ν τ  

where 
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Step 12 (Gibbs): 

Sample 2σ  from  
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Parameters for run 

Burn-in: 1000 

Imputations: 100,000 

ν = -50 
2τ  = 100 

γ = 1 

δ = 100 
2θ  = 0.01 

Starting values 

i ilλ =  

1
log

10 ilµ = �  

( )22 1
log

9 ilσ µ= −�  
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Other options 

1) Combine steps 1 – 10 into a single draw. 

With this option all λs change or none do.  
In the sampler used, whether each λ 
changes is independent of the other λs. 

The option used is probably preferable, as it 
should lead to better mixing of the chain. 

2) Combine sampling λ, µ, and 2σ  into a single 
M-H step.  Probably suboptimal as the 
proposal distribution won’t be a great 
match for the joint posterior distribution of 
λ, µ, and 2σ . 
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Rejection rates 

Having some rejection can be good. 

With the multiplicative random walk sampler 
used, if 2θ  is too small, there will be very few 
rejections, but the sampler will move too slowly 
through the space. 

Increasing 2θ  will lead to better mixing, as 
bigger jumps can be made, though it will lead 
to higher rejection rates. 

You need to find a balance between rejection 
rates, mixing of the chain, and coverage of the 
state space. 

For some problems, a rejection rate of 50% is 
fine and I’ve seen reports for large problems 
using normal random walk proposals the 
rejection rates of 75% are optimal. 
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Rejection rates for failure rates proposals under 
different random walk variances 
 

Pump 0.000001 0.0001 0.01 0.04 

1 0.00012 0.00613 0.07045 0.13776 

2 0.00009 0.00531 0.03141 0.06130 

3 0.00034 0.00784 0.07107 0.13754 

4 0.00043 0.01126 0.11705 0.22482 

5 0.00028 0.00691 0.05521 0.10705 

6 0.00126 0.01442 0.13511 0.26028 

7 0.00012 0.00148 0.03027 0.05735 

8 0.00007 0.00414 0.02854 0.05824 

9 0.00024 0.00559 0.06105 0.12131 

10 0.00070 0.01461 0.14790 0.27735 
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Standard errors in MCMC 

As discussed before, the correlation of the 
chain of the chain must be taken into account 
when determining standard errors of quantities 
estimated by the sampler. 

Suppose we use x  to estimate and that the 
burn-in period was long enough to get into the 
stationary distribution.  Then 
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For a reasonable chain, the autocorrelations 
will die off and so lets assume that they will be 
negligible for j > K.  Then the above reduces to 
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If the autocorrelations die off fairly quickly, 2σ  
and jρ  can be estimated consistently (though 
with some bias) by the usual empirical 
moments. 
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Another approach is blocking.  Assume that n = 
Jm for integers J and m.  Then let 

( )1 1

1
; 1, ,

jm

j i
i j m

x x j J
m = − +

= =�� �  

Note that x x= � .  If m is large relative to K, then 
the correlations between the jx�  should 
negligible and the variance can be estimated as 
if the jx�  were independent. 

If the correlation is slightly larger, it might be 
reasonable to assume that the correlation 
between jx�  and 1jx +�  is some value ρ to be 
determined, but that correlations at larger lags 
are negligible.  In this case 

( ) ( )1 2
Var Var jx x

J
ρ+

��  
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Estimates with m = 100 
 

Parameter x  SE ρ 

1λ  0.05290 0.00071 0.36116 

2λ  0.06926 0.00277 0.66197 

3λ  0.07837 0.00106 0.35354 

4λ  0.11053 0.00056 0.10520 

5λ  0.56167 0.01119 0.46975 

6λ  0.60546 0.00237 0.10960 

7λ  0.92318 0.04068 0.67346 

8λ  0.90361 0.03766 0.63510 

9λ  1.82900 0.02884 0.33629 

10λ  2.10188 0.00726 0.05263 

µ -2.52492 0.01384 0.41517 
2σ  27.15958 0.09967 0.07579 
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Estimates with m = 1000 
 

Parameter x  SE ρ 

1λ  0.05290 0.00075 0.13239 

2λ  0.06926 0.00399 0.18756 

3λ  0.07837 0.00088 -0.13079 

4λ  0.11053 0.00045 -0.15794 

5λ  0.56167 0.01205 -0.00838 

6λ  0.60546 0.00226 -0.07845 

7λ  0.92318 0.06081 0.12201 

8λ  0.90361 0.04822 0.04495 

9λ  1.82900 0.03303 0.07779 

10λ  2.10188 0.00757 0.06487 

µ -2.52492 0.01981 0.15224 
2σ  27.15958 0.13956 0.29726 

 


