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Bias Correction 

Since we can estimate the bias of an estimator, 
we can use this to correct for it. 
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Can approximate this by 
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One approach to correcting for bias is based on 
figuring out the expectation of an estimator. 

For example, lets estimate 2
1µ  by 2x  
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Thus a less biased estimator is 
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This approach assumes that the expectations 
can be determined. 

As this is often difficult to do, the bootstrap 
gives us an easy way to approximate this as 
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So the estimator 

( ) �BT Bias−x  

usually will have lower bias than ( )T x  
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Parametric Bootstrap 

Assume that the data comes from some 
parametric family Fθ . 

For example, with the Law School example, we 
could assume that the data is bivariate normal 
( ( ),θ µ= Σ ). 

The common approach for determining 
standard errors in the parametric setting is to 
use the delta rule or some other asymptotic 
approximation. 

For example 
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So for the Law School example, r = 0.776 which 
gives ( )se r  = 0.115 (which is similar to the 
nonparmetric bootstrap value of 0.130 (B = 
1000)). 

Instead of using the textbook asymptotic 
formula, we can use the parametric bootstrap 
instead. 
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Parametric Bootstrap for Estimating Standard 
Errors and Bias 

1) Estimate the parameter given the assumed 
distributional form (call it θ̂ ) 

2) Select B independent parametric bootstrap 
samples *1 *2 *, , , Bx x x� , each consisting of n 
data values drawn from the distribution ˆFθ . 

3) Evaluate the bootstrap replication 
corresponding to each bootstrap sample, 

( )* ; 1, ,bT b B=x �  

4) Evaluate the standard error, ( )*
se T  by  
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5) Evaluate the bias �BBias  by 

� [ ] ( )*ˆBBias E T T= − x  
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For the Law School example, lets set ( )ˆ ˆ,̂θ µ= Σ  

where 
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are the usual parameter estimates (y: LSAT, z: 
GPA).  For the example, these are 

( )*1T x  

( )1 2, , , nx x x=x �  
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Parametric Bootstrap - Correlation
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( )se r  = 0.115 (asymptotic formula) 

� ( )se r  = 0.122 (parametric bootstrap) 

�Bias  = -0.0125 
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For the correlation, Fisher’s transformation is 
often used since it better distributional 
properties.  Fisher showed that 
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approximately. 

Lets transform our bootstrap sample to see 
how well this works 

Parametric Bootstrap - Fisher transformation
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 = 1.036 

( )se ξ  = 0.289 (asymptotic formula) 

� ( )se ξ  = 0.292 (parametric bootstrap) 

�Bias  = 0.0319 

For both of these examples, the parametric 
bootstrap estimates of the standard error agree 
well with the asymptotic formula. 

This is usually the case.  So why bother with 
the parametric bootstrap? 

It can provide more accurate answers.  Some of 
the text book formulas only work well when the 
sample size is large.  An example of this is 

( )se RR  from a 2x2 table. 

It can be used when asymptotic formulas for 
standard errors are unknown. 
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For example, what is ( )2se r ? 

Parametric Bootstrap - R^2
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2r  = 0.603 

( )2se r  = ??? (asymptotic formula) 

� ( )2se r  = 0.169 (parametric bootstrap) 

�Bias  = -0.00445 
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Actually an asymptotic formula for ( )2se r  is 

probably known since 
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where F is the usual ANOVA F-test for ρ = 0 

 

Confidence Intervals 

As the bootstrap is used to approximate the 
sampling distribution, it can be used to 
generate confidence intervals (and for 
hypothesis testing as well). 

There is a wide range of bootstrapping 
approaches to this problem.  Which of these to 
use depends on the form of the bootstrap 
distribution. 

In the examples, I’ll use a nonparametric 
bootstrap, but parametric bootstrap can also 
be used. 

Also in all the examples, I’ll be using 1 - 2α 
percentile intervals. 

Notation: ( ) ( )* *ˆ bb Tθ = x  
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Percentile Interval 

Easy interval to generate 

( ) ( )* * 1ˆ ˆ ˆ ˆ, ,lo up B B
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where ( )*̂
B

αθ  is the 100αth empirical percential of 
the ( )*̂ bθ  values. 

So if B = 2000 and α = 0.05, we need the 100th 
and 900th ordered values of the ( )*̂ bθ ’s 
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For the correlation example, confidence 
intervals for different confidence levels are 
 

Level Lower Upper 

90% 0.525 0.951 

95% 0.458 0.964 

99% 0.367 0.980 

 

To get these confidence interval, B needs to be 
fairly large since we need to determine the tail 
properties of the sampling distribution.  Efron 
and Tibshirani recommend B being at least 
1000 for reasonable choices of α. 

Bootstrap-t interval 

Based on the standard t based confidence 
interval 
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which is based on 

( )
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having an approximate t distribution. 

The idea behind the bootstrap-t interval is to 
use the bootstrap to approximate the 
distribution of z. 

Let ( ) ( )
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Then the ( )t̂ α  is the 100αth empirical percential 
of the ( )*Z b . 

The bootstrap-t interval is 
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One complication to this procedure is that a 

standard error, � ( )
*

se b  is needed for each 
bootstrap sample. 

For the correlation example, you could use the 
textbook formula assuming normality 
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Another approach, not used here, is to use a 
second level of bootstrapping to estimate the 
standard error. 

This requires 1 2B B  total bootstrap samples, 
where 1B  is the number of bootstrap samples to 
get the distribution of ( )*Z b  and 2B  is the 
number of bootstrap samples for each 1B  
sample to get the standard error. 
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Level Lower Upper 

90% 0.522 0.910 

95% 0.459 0.938 

99% 0.311 0.975 

 

This approach often works better when the 
distribution of ( )*Z b  is roughly pivotal (the 
distribution doesn’t depend on the parameters 
of interest. 

For the correlation example, Fisher’s 
transformation can be used. 

Get a CI for ξ and then transform back to get 
one for ρ. 

In this case the back transformation is 
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So for this case, if a confidence interval for ξ is 
,lo upξ ξ� �� �, a confidence interval for ρ is 
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For the example, the intervals are 
 

Level Lower Upper 

90% -0.020 0.926 

95% -0.221 0.941 

99% -0.555 0.955 

These intervals are based on the asymptotic 
variance formula for ξ and can be replaced by a 
bootstrap estimate.  This gives much different 
intervals than the other 2 procedures. 

While it didn’t occur with this example, it is 
possible for an end point, to be outside the 
range [-1, 1] with either of the bootstrap-t 
approaches. 

Bootstrap-t based intervals are not 
transformation respecting. 

However the Percentile intervals are, assuming 
of course you aren’t doing something stupid 
with your estimation procedures. 
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There are other bootstrapping approaches to 
confidence intervals. 

The most common 2 are 

• BCa: Bias-corrected and accelerated 

• ABC: Approximate bootstrap confidence. 

ABC is an approximation to BCa which reduces 
the number of bootstrap samples. 

These two approaches tend to give better 
intervals than those discussed earlier. 

They are both transformation respecting and 
tend to have more accurate coverage 
probabilities. 

 


