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Sequential Importance Sampling (SIS) 

AKA Particle Filtering, Sequential Imputation 

(Kong, Liu, Wong, 1994) 

For many problems, sampling directly from the 
target distribution is difficult or impossible. 

One reason possible reason for this is the size 
of the space that needs to be drawn from 

Examples: 

1) Linkage Analysis (Irwin, Cox, & Kong, 1994) 

 

• m = 41 members 

• n = 27 (nonfounders), f = 14 (founders) 

• 8 markers from chromosome 19 
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•  #alleles ranges from 6 to 8 

•  14 members in top 2 generation have no 
marker data 

Want to sample joint haplotypes for all pedigree 
members conditional on the observed marker 
and disease data 

Assume that marker j has jn  possible alleles 
and the disease locus has two alleles. 

Then the number of possible haplotypes for 
each person is 

24 jh n= ∏  

and the maximum number of joint haplotypes 
possible is 

mH h=  

If jn  = 8 for all markers, h = 151.1259 10×  and 
H = 6171.29268 10× . 

Note that not all possible joint haplotypes 
included in H have positive probability since 
they won’t be consistent with Mendelian 
segregration. 
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In addition the observed data will also reduce 
the number of possible haplotypes with positive 
probability. 

2) Target tracking (Irwin, Cressie, & 
Johannesson, 2002) 

Movement Model: 
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where ,x tδ  and ,y tδ  are the average accelerations 
in the x and y directions from time t – 1 to time 
t. 
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This gives 
1
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This can be written in matrix format 

1t t tX GX Hδ−= +  

where 

, ,
T
t t t x t y tX x y v v� �= � � 

, ,
T
t x t x tδ δ δ� �= � � 
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Assume that the model for the average 
accelerations is 

( )2~ 0,t tNδ Λ  
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Measurement model: 

Two radars track the targets position with error 

t t tZ FX ε= + ; ( )~ 0,t tNε Σ  

where 
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The probability structure can be described by 
the following graph 

 

X0 X1 X2 X3 

Z1 Z2 Z3 
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The model is an example of the hidden Markov 
model.  The state variables tX  are described by 
a continuous state Markov Chain but are 
unobserved (hidden).  All that is observed are 
the tZ , the observed target positions 

Problem: 

Want to know the distribution of 1:t tX Z  for 
each t ( { }1: 1, ,t tZ Z Z= � ). 

 

Since this is a linear dynamic model, it can 
easily be solved by the Kalman filter (KF) 
(Kalman, 1960). 

In this case, 1:t tX Z  is Gaussian and the means 
and variances can be determined by the 
following simple update formulas. 

 

1:t t tE X Zµ � �= � �; 1: 11 t tt t E X Zµ −− � �= � � 

( )1:Vart t tP X Z= ; ( )1: 11 Var t tt tP X Z −− =  
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Assuming [ ]tE δ  = [ ]tE ε  = 0, the KF 
calculations are 

 

( )
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where tK  is known as the Kalman gain. 

Note that the Kalman filter calculations here 
reduce to Normal conditional distribution 
calculations.  For example 

( )( ) 1
Cov( , ) Vart t t tK X Z Z

−
= , 

exactly what you need to calculate for a 
multivariate regression of tZ  on tX . 

tP  reduces to a standard conditional variance 
calculation. 
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The above data was generated under the model 
described above with 

[ ]0 0 0 1 1
T

X =  

0.003 0

0 0.003t

� �
Λ = � �

� �
; 0.5 0.0548 0

0 0.0548t

� �
Λ = � �

� �
 

and 

0.03 0 0 0

0 0.03 0 0

0 0 0.04 0.008

0 0 0.008 0.004

t

� �
� �
� �Σ =
� �
� �
� �

 

 

However if the movement or measurement 
models are non linear or contain non-normal 
random components, and the Kalman filter or 
its modifications, such as the Extended 
Kalman filter (EKF) can give poor answers. 

The EKF linearizes the system through Taylor 
series approximations and then runs the 
standard Kalman filter on this linear system. 
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An example with a nonlinear component is 
given with the movement model 
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1 ,

1 1
1

1 1
1

log log

cos cos
2

sin sin
2

t t s t

t t t

t t t t
t t

t t t t
t t

s s

s s
x x

s s
y y

θ

δ
θ θ δ

θ θ

θ θ

−

−

− −
−

− −
−

= +
= +

+
= +

+
= +

 

In this setting, simulating realizations of tX  will 
give a better approximation to 1:t t tE X Zµ � �= � � 

and ( )1:Vart t tP X Z= , (or any other functional of 

tX ). 

In this case the distribution of tX  can be 
extremely difficult to deal with directly, but is 
fairly easy to deal with conditional of the earlier 
parts of the path (drawing tX  given 1tX −  and tZ  
is tractable) 

For both examples (linkage analysis and target 
tracking), sequential importance sampling is a 
useful technique for sampling from the desired 
posterior distributions. 
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Let { }1 2, , , kX X X X= �  be some decomposition 
of the random variable you wish to sample from 
and { }1 2, , , kY Y Y Y= �  be the corresponding 
decomposition of the data you wish to 
condition on. 

Want to sample from 

( ) ( ) ( )
( )

p X p Y X
p X Y

p Y
=  

which is assumed to be difficult to do. 

Want to find a distribution ( )q X Y  that is easy 
to sample from and use importance sampling. 

SIS 

1) Sample ( )1 1 1 1~X q X Y  and calculate 

( ) ( )
( )

1 1
1 1

1 1 1

p X Y
w X

q X Y
=  

2) Then for j = 2, … , k 

 Sample ( )1: 1: 1~ ,j j j j jX q X Y X −  and calculate 
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( ) ( )
( )

( ) ( )

1: 1 1: 1

1: 1:

1: 1: 1 1: 1 1: 1,

j j j j

j j

j j j j j j
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− −
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=
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The factor  

( )
( ) ( )

1: 1:

1: 1: 1 1: 1 1: 1,

j j

j j j j j j

p X Y

q X Y X p X Y− − −

 

is often easy to calculate. 

The resulting sample 1:kX X=  is a weighted 
sample from ( )p X Y  with unnormalized 
importance sampling weight 

( ) ( )
( )

1: 1:
1:

1: 1:

k k
k k

k k

p X Y
w X

q X Y
=  

where 

( ) ( ) ( )1: 1: 1 1 1 1: 1: 1
2

,
k

k k j j j j
j

q X Y q X Y q X Y X −
=

= ∏  

The components of the proposal need to be 
chosen so that that they are easy to sample 
from. 
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Two popular choices are 

( ) ( )*
1: 1: 1 1: 1: 1, ,j j j j j j jq X Y X p X Y X− −=  

and 

( ) ( )'
1: 1: 1 1: 1,j j j j j jq X Y X p X X− −=  

The first choice is optimal in that is minimizes 
the variance of the importance sampling 
weights (which will increase the ESS). 

The second choice is often easy, such as with 
the target tracking example.  However by 
ignoring the data, it can significantly increase 
the importance sampling weight variance. 

 

Optimal proposal properties 

For the optimal proposal 

( ) ( ) ( )1: 1 1: 1 1: 1
2

,
k

k j j j
j

w X p Y p Y Y X− −
=

= ∏  

which implies (Kong et al, 1994, Irwin et al, 
1994) 
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( ) ( ) ( )
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Thus the likelihood of the data can be 
estimated with the average of the unnormalized 
importance sampling weights. 
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Implementing SIS for the target tracking 
example. 

Since the movement is described by a Markov 
chain and the observations are assumed to be 
independent 

( ) ( )
( )
( ) ( )

*
1: 1: 1 1: 1: 1

1

1

, ,
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So the optimal proposal is tractable here. 

In fact, ( )1, ~ ,j j j j jX X Y N θ− Γ  where 

( ) ( )

( )

1
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j j j j j

T
j j

T T T T T
j j j j
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+ Λ Σ + Λ −

Γ = Λ

− Λ Σ + Λ Λ
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In addition, the multiplier for the weight is 

( ) ( )1: 1 1: 1 1,j j j j jp Y Y X p Y X− − −=  

which is the density of a 
( )1,

T T
j j jN FGX FH H F− Σ + Λ  random variable. 
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One potential problem with SIS is that the 
variance of the importance sampling weights 
increases over time, which implies that ESS 
decreases as the sampler proceeds. 

Thus the estimates of the mean are less 
precise, the further into the sampler we go. 

Solution: Resampling. 


