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Target tracking example. 

Step j (j = 1, … , k): 

)i  Sample ( )1, ~ ,j j j j jX X Y N θ− Γ  where 
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This is gotten by plugging the appropriate 
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)ii  Update the weight 

( ) ( ) ( )1: 1 1: 1 1j j j j j jw X w X p Y X− − −=  

since 

( ) ( )1: 1 1: 1 1,j j j j jp Y Y X p Y X− − −=  

( )1j jp Y X −  is a normal density with 
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What to do with more complicated models, 
such as 
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The optimal proposal distribution still has the 
form 

( ) ( )
( )
( ) ( )
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However ( )1j jp X X −  is no longer normal, 

though it is based on normal, assuming the 
random changes in speed and direction are 
normal. 

One approach is to approximate it with a 
normal matching the mean and variance 
(approximately).  Then the combination of the 
two pieces is approximately normal. 

The normal approximation may be determined 
by 

• Taylor series approximation (Delta rule) 

• Numerical quadrature (Scaled unscented 
transformation) 

• ??? 
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For the nonlinear model above, it can also be 
dealt with by setting the state vector to 

[ ]* logt t tX S θ=  and having the measurement 
model for tZ  depend on * *

1 , , tX X�  in a nonlinear 
fashion. 

The models are exactly the same, just 
parametrized differently.  However the different 
parametrizations lead to a different normal 
approximations, and in fact for this example 
the nonlinear measurement model works better 
(lower CV for the importance sampling weights 
and smaller standard errors for the filtered 
target locations. 

 

Data decompositions 

{ }1, , kX X X= �  and { }1, , kY Y Y= �  

Efficiency of SIS depends on how this 
decomposition is made. 

In some problems there may be many ways of 
doing this decomposition. 
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For the target tracking example there isn’t.  The 
only decomposition that makes sense is to 
match it with time.  (Physical constraints of 
data collection force this.) 

Here are a couple where it does make a 
difference 

Example 1: Multivariate normal data with 
missing values (Kong et al, 1994) 

Bayesian analysis using the Jeffreys’ 
noninformative prior. 

269 observations of a 6 component vector 

88 observation complete 

181 observations had at least 1 component 
missing with some missing up to 4 
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They performed simulation in the order given 
above 

1) complete data 

2) 1 component missing 

3) 2 components missing 

etc 

Another approach would be to deal with the 
data in the data collection order (which 
probably was random) 

The importance sampling weights in this 
second approach will be more variable and 
thus more imputations will be needed to reach 
the same precision. 

Note that in the analysis in this paper, it was 
based on simulated data.  However it was 
based on the structure of a real data set from 
the social sciences. 

One potential problem with SIS is that the 
variance of the importance sampling weights 
increases over time, which implies that ESS 
decreases as the sampler proceeds. 
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Example 2: Linkage Analysis 

Similar to the example presented last time, but 
on a different data set (Irwin et al, 1994) 

Want to estimate the disease location of a 
putative gene for a form of diabetes located on 
20q with 8 markers. 

Two approaches: 

1) Process all marker data first then the 
disease data 

2) Process marker RM292 first, then the 
disease data, then the other 7 markers 

In both approaches the disease was processed 
in the middle of the marker interval of interest 
and the likelihood for other points in the 
interval were determined by reweighting the 
sample 
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CEPH Distances: 
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MCEM Distances 
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In all cases processing the disease early gave 
more precise estimates, in some cases by a 
factor over 30. 

When possible, you want include as much 
information in 1Y . 

Want to sample with trial distribution based on 

( ) ( ) ( )
( )

1 2 1

1: 1

,

,k k

p X Y p X Y p X X Y

p X X Y−

= ×

×

�

 

instead of  

( ) ( ) ( )
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The first case will have importance sampling 
weights = 1 (assuming that you don’t need to 
use importance sampling for any of the 
components ( )1: 1,j jp X X Y− ). 

 

Thus careful thought can help alleviate the 
problem I talked about last time, the increasing 
variance of the importance sampling weights as 
the sampler progresses. 
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For example, suppose you have a process that 
you want to model with the following 
hierarchical structure 

Process level 1: [ ]Y  

Process level 2: X Y� �� � 

Data: , ,x y x yZ Z X Y Z X Z Y� � � �� �= � �� � � � 

Want to sample X and Y from , ,x yX Y Z Z� �
� �.  

One possible scheme is to use the following SIS 
scheme 

1) Sample X from xX Z� �� � by SIS giving 

weights ( )xw X . 

2) Sample Y from , ,x yY X Z Z� �
� �.  Given the 

probability structure above 

, , ,x y yY X Z Z Y X Z� � � �=� � � � 

 If it is possible to sample directly from 
, yY X Z� �

� �, 

( ) ( ), ,x y xw X Y w X=  
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 i.e. the simulation of Y in this case won’t 
increase the variance of the importance 
sampling weights. 

 I have been able to do this with some 
genetics example, where X are the 
haplotypes, and Y is the inheritance vector. 

However this idea won’t work in the target 
tracking example. 

 

Lets look at how the normalized importance 
sampling weights can evolve over time in the 
target tracking example. 
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One way to think about importance sampling 
weights is in terms of how many samples would 
you expect to see if you sampled from the 
target distribution instead of the trial 
distribution you actually sampled from (if 
weights normalize to have mean 1). 

So if ( )w X  = 2, you would expect to see about 
twice as many copies of X if you sampled 
directly from the target distribution. 

( )w X  = 0.5 implies you would expect half as 
many 

 

 
(From: van der Merwe et al, 2000, The Unscented Particle Filter) 
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Resampling: 

Sample realizations from the set { }1
1: 1:, , n

j jX X�  

with probabilities proportional to the weights 
( ) ( )1

1: 1:, , n
j jw X w X� . 

Treat this new sample as an equally weighted 
from the target distribution. 

Sequential Imputation with Resampling 

For i = 1, … , n 

1) Sample ( )1: 1: 1~ ,i i
j j j j jX q X Y X −  

2) Update weight 

( ) ( )
( )

( ) ( )

1: 1 1: 1

1: 1:

1: 1: 1 1: 1 1: 1,

i i
j j j j

i
j j

i i i
j j j j j j

w X w X

p X Y

q X Y X p X Y

− −

− − −

=

×
 

3) If appropriate, resample n realizations 
from{ }1

1: 1:, , n
j jX X�  with probabilities 

proportional to ( ) ( )1
1: 1:, , n

j jw X w X� . 

 Reset weights ( )1:

1i
j jw X

n
=  
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Note that the resampling step does not have to 
be done through each pass.  Two approaches 
are 

1) resample every m times through (j = m, 2m, 
…) 

2) monitor the weights and resample when the 
behaviour starts to get poor (e.g. when CV > 
C) 
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With resampling some realizations will get 
replicated and some will drop out. 

There are a number of ways of doing the 
sampling. 

Let 

( ) ( )
( )

i

i

j

w X
w X

w X
=
�

�  

be the normalized weights 

 

1) Multinomial sampling (Gordon, 1994) 

 Sample 

( ){ }( )1, , ~ Multi , j
nl l n w X��  

where jl  is the number of copies of jX  in 
the new sample 
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This is equivalent to 

Draw ( )~ Unif 0,1iU , i = 1, … , n 

 Set i jX X=�  if 

( ) ( )
1

1 1

j j
l l

i
l l

w X U w X
−

= =

≤ <� �� �  

 

2) Residual sampling (Higuchi (1997), Liu and 
Chen (1998)) 
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3) Minimum variance sampling (Kitagawa 
(1996), Crisan (2001)) 

 Sample ( )1
1 n~ Unif 0,U  

 Let 1

1
j

j
U U

n
−= +  for j = 2, … , n 

1
j

j j
U

n n
− ≤ <  

 Set i jX X=�  if 

( ) ( )
1

1 1

j j
l l

i
l l

w X U w X
−

= =

≤ <� �� �  

 This procedure has the property that jX  
will occur either ( )jnw X� �

� �
�  or ( ) 1jnw X� �+� �

�  

times in the new sample. 

 This implies that samples with high weights 
must be included in the new sample and 
that lowly weighted samples can’t get in 
very often. 

 This will minimize the variances on { }jl  

 


