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Newton – Raphson 

Probably the most popular root finding method. 

Based on Taylor series approximation 
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where z between xn–1 and x∞.  If we plug xn in 
place of x∞, we get the following updating 
equation 
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Geometric Interpretation of updating formula 

Finds tangent line to curve at − −1 1( , ( ))n nx g x  

− − −= + −1 1 1( ) ( ) '( )( )n n nl x g x g x x x  

and solves =( ) 0l x  to give xn.  This sequence is 
continued until convergence. 
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Example: Variance Heterogeneity 

µ µ = �

2 2~ ( , ); 1, ,i i iY x N x i n  

Since the variance depends on the mean, the y  
will not be the MLE in this case. 
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The Newton scheme for this problem is given by 
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As an example, 30 independent observations 
were generated in Matlab from 

2 2~ (10,10 )i i iY x N x  where χ 2
4~iX . 

For a starting point, µ =0 y  = 11.7646, a 
method of moment estimator will be used. 
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As can be seen, the Newton-Raphson scheme 
converges quickly the the MLE µ̂  = 9.8279.  
Note that this is quite a bit lower than y  = 
11.7646 
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Iteration µi µi – µ∞ 

0 11.7646 1.9367 
1.0000 8.4280 -1.3999 
2.0000 9.4024 -0.4255 
3.0000 9.7830 -0.0449 
4.0000 9.8274 -0.0005 
5.0000 9.8279 -0.0000 
6.0000 9.8279 -0.0000 
7.0000 9.8279 0 
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Instead of starting at y , lets start at µ0  = 15.1.  
The sequence of iterates quickly diverges. 
 

Iteration µi 
0 15.1000 
1 -24.8822 
2 335.4398 
3 667.3233 

However if we start close by at µ0  = 15, we 
converge to where we want.  Note however that 
we do take a weird path. 
 

Iteration µi 
0 15.0000 
1 -21.4034 
2 9.1677 
3 9.7235 
4 9.8251 
5 9.8279 

In fact, the Newton-Raphson scheme will 
converge to 9.8279 if µ0  � (0, 15.01026).  If  
µ0  > 15.01026, the procedure appears to 
diverge to ∞. 

So the starting point matters.  Lets look at the 
score function µ( )l . 
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So when µ gets around 14 or 15, the function 
gets very flat ( µ'( )l  is close to zero), so the first 
iteration takes the sequence far from the zero. 

In fact when µ is greater than 18, the zero, 
assuming that there is one (probably isn’t), is 
in the other direction from what we want. 

These results can be seen from the updating 
formula 
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Convergence of Newton-Raphson 

Note that updating formula is of the functional 
iteration form 

−= 1( )n nx f x  

so we can use the methods earlier to 
investigate the convergence properties of 
Newton – Raphson. 

As seen last time, the convergence depends on 
'( )f x .  For Newton 
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As seen last time, we need –1 < '( )f x  < 1 for the 
sequence to converge to a fixed point.  Notice 
that the above depends of '( )g x , which is the 
derivative of the function we are trying to find a 
root for.  So '( )f x  will not be well behaved 
when '( )g x  too flat, exactly the problem we 
observed when µ0  > 15.01026 in the example. 

However, around the root, '( )g x  is bounded 
away from zero, so the procedure should work 
well. 



9 

The bottom line is that often you need to be 
careful about where you start Newton-Raphson 
and also you need to monitor how it is 
converging (to be addressed later). 

Convergence rates 

Also of interest, is how fast a root finding 
scheme converges to a root. 

As we’ve seen so far, the bisection method and 
functional iteration both have linear 
convergence. 

Procedures that have linear convergence satisfy 
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where en = xn – x∞.  Assuming that the 
procedure can be written in the form  

−= 1( )n nx f x  

we can look at a Taylor series approximation 
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where z between xn–1 and x∞.  Provided that 
'( )f z  is continuous and x0 isn’t too far from x∞, 

this implies that 
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As we saw last time, if ∞'( )f x  is bounded 
between -1 and 1, this implies that the scheme 
will converge to a fixed point. 

However for Newton-Raphson 
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which suggests that it should converge at a 
faster rate.  Note that we have to be a bit 
careful here, as we can get into division by 0 
issues due to '( )g x . 

Let en = xn – x∞ be the current approximation 
error.  Then a Taylor series approximation gives 
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where z between xn – 1 and x∞.  Provided that 
''( )f z  is continuous and x0 isn’t too far from x∞, 

this implies that Newton converges.  In 
addition, this implies that 
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Newton-Raphson has what is known as 
quadratic convergence.  In general, a scheme 
converges at order α if 
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Note that α does not need to be an integer.  For 
example, the Illinois scheme converges with 
order 1.442 (Thisted, 1988).  The secant 
method, which is to come, converges at a rate 
between 1 and 2. 

Assessing convergence 

While with the bisection method, you can pre-
specify the number of iterations needed to 
reach a desired level of accuracy, other 
algorithms such as Newton-Raphson, you 
can’t. 
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Instead the sequence of −− 1| |n nx x  is 
monitored.  When −− 1| |n nx x  gets small enough 
(say < TOL), the procedure is stopped. 

The choice of TOL depends the level of accuracy 
desired and the magnitude of x∞. 

For example setting TOL = 0.1 when x∞ = 0.001 
is a bit useless.  As an alternative, a stopping 
criteria of the form 

−−
<1| |
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| |
n n

n

x x
x

 

is sometimes used.  You need to be a bit careful 
when xn is around 0 with this relative error 
criterion. 

One other issue when using stopping criteria 
like either of the above is when the procedure 
converges very slowly or diverges.  Usually a 
maximum number of iterations needs to be 
specified. 

The following segment of Matlab code gives the 
basic form for most iterative root finding 
routines. 
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% I ni t i l i ze l oop var i abl es 

i  = 0;  
di f f  = 2 *  TOL;   % guar ant ees at  l east  one pass 
                 % t hr ough l oop 
 
whi l e ( i  < Nmax && di f f  > TOL)   % Not  conver ged 
  i  = i  + 1;  
  xol d = xnew;  
  xnew = f ( xol d) ;  
  di f f  = abs( xol d -  xnew) ;  
end 
 
i f  ( di f f  > TOL)  
  war ni ng( ' Met hod di d not  conver age af t er  Nmax 
st eps' ) ;  
end 

In addition, it also useful to examine ( )lastg x , 
the value of the function at the output of the 
root finding routine to make sure that you are 
close enough to the root.  You could have a 
function such at −1( )ng x  is a bit away from zero, 
but − − −− = −1 1 1( )/ '( )n n n ng x g x x x  is close to zero. 
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Advantages of Newton-Raphson 

• Fast – quadratic convergence. 

• When used to optimize a function, can also 
get variance of estimate. 
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 The observed information is given by µ∞− '( )l  
and its inverse is a common variance 
estimate for µ∞. 

• Easily extended to multi-parameter 
problems. 

Disadvantages/Problems with Newton-Raphson 

• Doesn’t have to converge.  However 
modifications can be made to avoid non-
convergence problems (e.g. take smaller 
steps). 
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•  Uses derivatives, which can have a high 
computational burden.  However, in cases 
where derivatives may be difficult to deal 
with, the derivatives can be numerically 
approximated. 

Secant Method 

An approach which uses a numerical 
approximation to the derivative as part of the 
routine.  Uses the idea 
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if xn-2 and xn-1 aren’t too far apart.  This leads to 
the updating formula of 
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Now the secant method has similar properties 
to Newton-Raphson.  One difference is that it 
doesn’t have quadratic convergence, but it is 
still better than linear.  It can be shown that 
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You do need to have a reasonable convergence 
criterion for this procedure as if you take the 
algorithm to far, xn-2 = xn-1 (and − −=1 2( ) ( )n ng x g x ), 
so eventually you will get a division by 0 
problem. 

For the variance heterogeneity example the two 
procedures converge similarly.  Setting µ =0 y  
for both procedures (and µ− = −1 0.1y  for the 
secant procedure) and TOL = 10-6), they both 
converge to the same point µ̂  = 9.8279 with  
Iobs = 0.7627, which gives µVar( ˆ) = 1.3112. 

In addition, 

µ µ−ˆ ˆNR SEC  = -1.1191e-013 

−NR SECI I  = 5.2013e-006 

Newton-Raphson took 6 iterates to converge 
and Secant took 8 iterates. 
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The path to convergence is not the same for the 
two algorithms 
 

Iteration Newton Secant 

0 11.7646 11.7646 

1 8.4280 8.5143 

2 9.4024 10.4980 

3 9.7830 10.0452 

4 9.8274 9.7867 

5 9.8279 9.8303 

6 9.8279 9.8279 

 

To see the advantage of quadratic convergence, 
it would take the Bisection algorithm around 
22 iterations to reach the same accuracy (with  
b0 – a0 = 6). 


