
1

Newton – Raphson

Probably the most popular root finding method.

Based on Taylor series approximation

− − ∞

− ∞

= −
= −

1 1

1

() () ()

'()()
n n

n

g x g x g x

g z x x

where z between xn–1 and x∞. If we plug xn in
place of x∞, we get the following updating
equation

−
−

−

= − 1
1

1

()
'()

n
n n

n

g x
x x

g x

Geometric Interpretation of updating formula

Finds tangent line to curve at − −1 1(, ())n nx g x

− − −= + −1 1 1() () '()()n n nl x g x g x x x

and solves =() 0l x to give xn. This sequence is
continued until convergence.

2

0.0 0.5 1.0 1.5 2.0

-8
-6

-4
-2

0
2

f(x) = 4 cos(x) - exp(x)

x

f(x
)

Example: Variance Heterogeneity

µ µ = �

2 2~ (,); 1, ,i i iY x N x i n

Since the variance depends on the mean, the y
will not be the MLE in this case.

µµ
µ µ=

� �� �−
� �∝ − � �� �� �� �

∏
2

1

1 1
() exp

2

n
i

i i i

y
L

x x

µµ µ
µ=

� �−
= − − +� �

� �
�

2

1

1
log () log ()

2

n
i

i i

y
L n c

x
x

3

µµµ
µ µ µ

µµ
µ

µ
µ µ µ

=

= =

� �−
= = − + � �

� �

=

� �−
= − −� �

� �

�

� �

3
1

2

2

2 4 3 2
1 1

log () 1
()

log ()
'()

3 1

n
i i

i i i

n n
i i i

i ii i i

y yd L n
l

d x x

d L
l

d

y y yn
x x x

The Newton scheme for this problem is given by

µµ µ
µ

−
−

−

= − 1
1

1

()
'()

n
n n

n

l
l

As an example, 30 independent observations
were generated in Matlab from

2 2~ (10,10)i i iY x N x where χ 2
4~iX .

For a starting point, µ =0 y = 11.7646, a
method of moment estimator will be used.

4

0 0.5 1 1.5 2 2.5 3 3.5 4
-30

-20

-10

0

10

20

30

40

50

60

xi

y i

Variance Heterogeneity Example

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

11.5

12

Iteration

µ i

Iterates starting at y-bar

5

As can be seen, the Newton-Raphson scheme
converges quickly the the MLE µ̂ = 9.8279.
Note that this is quite a bit lower than y =
11.7646

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

| µ
i -

 µ
∞

|

Iterates starting at y-bar

Iteration µi µi – µ∞

0 11.7646 1.9367
1.0000 8.4280 -1.3999
2.0000 9.4024 -0.4255
3.0000 9.7830 -0.0449
4.0000 9.8274 -0.0005
5.0000 9.8279 -0.0000
6.0000 9.8279 -0.0000
7.0000 9.8279 0

6

Instead of starting at y , lets start at µ0 = 15.1.
The sequence of iterates quickly diverges.

Iteration µi
0 15.1000
1 -24.8822
2 335.4398
3 667.3233

However if we start close by at µ0 = 15, we
converge to where we want. Note however that
we do take a weird path.

Iteration µi
0 15.0000
1 -21.4034
2 9.1677
3 9.7235
4 9.8251
5 9.8279

In fact, the Newton-Raphson scheme will
converge to 9.8279 if µ0 � (0, 15.01026). If
µ0 > 15.01026, the procedure appears to
diverge to ∞.

So the starting point matters. Lets look at the
score function µ()l .

7

8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

µ

l(µ
)

Score function

So when µ gets around 14 or 15, the function
gets very flat (µ'()l is close to zero), so the first
iteration takes the sequence far from the zero.

In fact when µ is greater than 18, the zero,
assuming that there is one (probably isn’t), is
in the other direction from what we want.

These results can be seen from the updating
formula

µµ µ
µ

−
−

−

= − 1
1

1

()
'()

n
n n

n

l
l

8

Convergence of Newton-Raphson

Note that updating formula is of the functional
iteration form

−= 1()n nx f x

so we can use the methods earlier to
investigate the convergence properties of
Newton – Raphson.

As seen last time, the convergence depends on
'()f x . For Newton

= − + =
2 2

'() () ''() () ''()
'() 1

'() '() '()
g x g x g x g x g x

f x
g x g x g x

As seen last time, we need –1 < '()f x < 1 for the
sequence to converge to a fixed point. Notice
that the above depends of '()g x , which is the
derivative of the function we are trying to find a
root for. So '()f x will not be well behaved
when '()g x too flat, exactly the problem we
observed when µ0 > 15.01026 in the example.

However, around the root, '()g x is bounded
away from zero, so the procedure should work
well.

9

The bottom line is that often you need to be
careful about where you start Newton-Raphson
and also you need to monitor how it is
converging (to be addressed later).

Convergence rates

Also of interest, is how fast a root finding
scheme converges to a root.

As we’ve seen so far, the bisection method and
functional iteration both have linear
convergence.

Procedures that have linear convergence satisfy

λ→∞
−

=
1

lim n
n

n

e
e

where en = xn – x∞. Assuming that the
procedure can be written in the form

−= 1()n nx f x

we can look at a Taylor series approximation

− ∞

−

= −
=

1

1

() ()

'()
n n

n

e f x f x

f z e

10

where z between xn–1 and x∞. Provided that
'()f z is continuous and x0 isn’t too far from x∞,

this implies that

→∞ ∞
−

=
1

lim '()n
n

n

e
f x

e

As we saw last time, if ∞'()f x is bounded
between -1 and 1, this implies that the scheme
will converge to a fixed point.

However for Newton-Raphson

∞ ∞
∞

∞

=
2

() ''()
'()

'()
g x g x

f x
g x

 = 0

which suggests that it should converge at a
faster rate. Note that we have to be a bit
careful here, as we can get into division by 0
issues due to '()g x .

Let en = xn – x∞ be the current approximation
error. Then a Taylor series approximation gives

− ∞

∞ − −

−

= −

= +

=

1

2
1 1

2
1

() ()

1
'() ''()

2
1

''()
2

n n

n n

n

e f x f x

f x e f z e

f z e

11

where z between xn – 1 and x∞. Provided that
''()f z is continuous and x0 isn’t too far from x∞,

this implies that Newton converges. In
addition, this implies that

→∞ ∞
−

=2
1

1
lim ''()

2
n

n
n

e
f x

e

Newton-Raphson has what is known as
quadratic convergence. In general, a scheme
converges at order α if

α λ→∞
−

=
1

lim n
n

n

e
e

 ≠ 0

Note that α does not need to be an integer. For
example, the Illinois scheme converges with
order 1.442 (Thisted, 1988). The secant
method, which is to come, converges at a rate
between 1 and 2.

Assessing convergence

While with the bisection method, you can pre-
specify the number of iterations needed to
reach a desired level of accuracy, other
algorithms such as Newton-Raphson, you
can’t.

12

Instead the sequence of −− 1| |n nx x is
monitored. When −− 1| |n nx x gets small enough
(say < TOL), the procedure is stopped.

The choice of TOL depends the level of accuracy
desired and the magnitude of x∞.

For example setting TOL = 0.1 when x∞ = 0.001
is a bit useless. As an alternative, a stopping
criteria of the form

−−
<1| |

TOL
| |
n n

n

x x
x

is sometimes used. You need to be a bit careful
when xn is around 0 with this relative error
criterion.

One other issue when using stopping criteria
like either of the above is when the procedure
converges very slowly or diverges. Usually a
maximum number of iterations needs to be
specified.

The following segment of Matlab code gives the
basic form for most iterative root finding
routines.

13

% I ni t i l i ze l oop var i abl es

i = 0;
di f f = 2 * TOL; % guar ant ees at l east one pass
 % t hr ough l oop

whi l e (i < Nmax && di f f > TOL) % Not conver ged
 i = i + 1;
 xol d = xnew;
 xnew = f (xol d) ;
 di f f = abs(xol d - xnew) ;
end

i f (di f f > TOL)
 war ni ng(' Met hod di d not conver age af t er Nmax
st eps') ;
end

In addition, it also useful to examine ()lastg x ,
the value of the function at the output of the
root finding routine to make sure that you are
close enough to the root. You could have a
function such at −1()ng x is a bit away from zero,
but − − −− = −1 1 1()/ '()n n n ng x g x x x is close to zero.

14

Advantages of Newton-Raphson

• Fast – quadratic convergence.

• When used to optimize a function, can also
get variance of estimate.

µµ
µ

µµ
µ

=

=
2

2

log ()
()

log ()
'()

d L
l

d

d L
l

d

 The observed information is given by µ∞− '()l
and its inverse is a common variance
estimate for µ∞.

• Easily extended to multi-parameter
problems.

Disadvantages/Problems with Newton-Raphson

• Doesn’t have to converge. However
modifications can be made to avoid non-
convergence problems (e.g. take smaller
steps).

15

• Uses derivatives, which can have a high
computational burden. However, in cases
where derivatives may be difficult to deal
with, the derivatives can be numerically
approximated.

Secant Method

An approach which uses a numerical
approximation to the derivative as part of the
routine. Uses the idea

()− −
−

− −

−
≈

−
2 1

1
2 1

()
'() n n

n
n n

g x g x
g x

x x

if xn-2 and xn-1 aren’t too far apart. This leads to
the updating formula of

()
− − −

−
− −

−
= −

−
1 1 2

1
1 2

()()
()

n n n
n n

n n

g x x x
x x

g x g x

Now the secant method has similar properties
to Newton-Raphson. One difference is that it
doesn’t have quadratic convergence, but it is
still better than linear. It can be shown that

+ ∞
→∞

− ∞

=1

1

''()
lim

2 '()
n

n
n n

e g x
e e g x

16

You do need to have a reasonable convergence
criterion for this procedure as if you take the
algorithm to far, xn-2 = xn-1 (and − −=1 2() ()n ng x g x),
so eventually you will get a division by 0
problem.

For the variance heterogeneity example the two
procedures converge similarly. Setting µ =0 y
for both procedures (and µ− = −1 0.1y for the
secant procedure) and TOL = 10-6), they both
converge to the same point µ̂ = 9.8279 with
Iobs = 0.7627, which gives µVar(ˆ) = 1.3112.

In addition,

µ µ−ˆ ˆNR SEC = -1.1191e-013

−NR SECI I = 5.2013e-006

Newton-Raphson took 6 iterates to converge
and Secant took 8 iterates.

17

The path to convergence is not the same for the
two algorithms

Iteration Newton Secant

0 11.7646 11.7646

1 8.4280 8.5143

2 9.4024 10.4980

3 9.7830 10.0452

4 9.8274 9.7867

5 9.8279 9.8303

6 9.8279 9.8279

To see the advantage of quadratic convergence,
it would take the Bisection algorithm around
22 iterations to reach the same accuracy (with
b0 – a0 = 6).

