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Solving Linear Systems and Computational 
Matrix Algebra 

Want to solve the system of linear equations 

Ax = b 

This occurs many places in Statistics 

• Linear regression: β =ˆT TX X X y  

• Non-linear least squares, Generalized 
Linear Models, iteratively reweighted least 
squares. 

• Optimization and root finding 

Newton-Raphson in the multivariate setting 
has the form 

−
− − −= − 1
1 1 1( ) ( )n n n nx x D x g x  

While the last case doesn’t look like it, it fits 
into this problem since −

− −
1

1 1( ) ( )n nD x g x  is the 
solution to − −=1 1( ) ( )n nD x y g x . 

Now, assuming that everything is nice (things 
are full rank, A is invertible, etc), the problem 
is easily solved by finding −1A  and calculating 

−= 1x A b  
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However this is usually a suboptimal approach 

•  It has a higher computational burden 

•  Numerically less stable – additional 
computational errors creep in 

Instead is usually preferable to solve the 
system of equations directly. 

For example, the code in S-Plus and R for 
fitting linear models, l m( ) , uses this approach, 
though their implementations are slightly 
different. 

In S-Plus, you can base the calculations on the 
QR (default), Choleski, or Singular Value (SVD) 
decompositions.  In R, only the QR approach is 
available. 

More generally, if you want to invert a matrix in 
S-Plus/R you use the sol ve( )  command. 

In Matlab, to avoid calculating unnecessary 
determinants, they have created matrix 
functions /  (mldivide) and \  (mrdivide). 

A/ B is equivalent to −1AB  

A\ B is equivalent to −1A B  

Actually A/ B is done by ( B’ \ A’ ) ’ . 
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From the Matlab help page for inv, the matrix 
inversion function: 
 

On a 300 MHz, laptop computer the statements  
 
n = 500; 
Q = orth(randn(n,n)); 
d = logspace(0,-10,n); 
A = Q*diag(d)*Q'; 
x = randn(n,1); 
b = A*x; 
tic, y = inv(A)*b; toc 
err = norm(y-x) 
res = norm(A*y-b) 

 
produce  
 
elapsed_time = 1.4320  
err = 7.3260e-006  
res = 4.7511e-007 
 

while the statements  
 
tic, z = A\b, toc 
err = norm(z-x) 
res = norm(A*z-b) 
 

produce  
 
elapsed_time = 0.6410 
err = 7.1209e-006 
res = 4.4509e-015 
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A is a matrix with a high condition number 
(1010), which is expected to have numerical 
accuracy problems. 

The accuracy of both procedures is similar 
(based on err lines) 

A\ b is much faster.  Usually the speed increase 
is by a factor of 2 to 3. 

The errors from a residual point of view (A* z–b, 
where z  is a solution of A* x = b), the residuals 
based on A\ b are much smaller. 

Wide range of approaches for solving Ax = b, 
some which depend on the form of A. 

Often in problems in Statistics, A will be 
symmetric, as with TX X  or covariance 
matrices. 

This structure can be exploited to achieve more 
efficient solutions. 
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LU Decomposition and Gaussian Elimination 

Any square nonsingular matrix A can be 
factored as LU = A, where L is lower triangular 
and U is upper triangular. 

The procedures for creating these matrices are 
equivalent to the Gaussian Elimination 
procedure taught in every linear/matrix 
algebra class. 

So to solve the system via this decomposition 
can be done in two steps 

1) Solve Ly = b by forward substitution 

2) Solve Ux = y by back substitution. 

To give an idea of how backward and forward 
substitution work, let 

� � � � � �
� � � � � �= = =
� � � � � �
� � � � � �� � � � � �
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Then for backward substitution 

= � =
+ × = � =

+ × + × = � =
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x x
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Forward substitution is similar. 

S-Plus/R has forwardsolve and backsolve 
for dealing with triangular matrices.  I haven’t 
been able to find the routines, but they must 
be there to get L and U. 

Now this approach is useful for any square 
nonsingular matrix, no other assumptions are 
needed. 

To determine L and U, there are recursive 
formulas for them which just involve simple 
arithmetic. 

For many of the problems we might be 
interested in, this approach is often of little 
interest. 

Choleski decomposition 

Definition: A matrix A is positive definite if 
≥ 0Tx Ax  for all x and equality only holds for 

the 0 vector. 

For example, most variance matrices are 
positive definite (though some are positive 
semidefinite).  Also TX X  from linear models are 
positive definite. 
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Assume that A is symmetric and positive 
definite. 

The Choleski decomposition factors A as 

= TA U U  

where U is upper triangular.  U can be 
determined by a simple recursive formula. 

Thus Ax = b can easily be solved by the steps 

1) Solve =TU y b  by forward substitution 

2) Solve =Ux y  by backwards substitution 

The same as for the LU decomposition. 

One advantage is the computation burden for 
getting the Choleski decomposition is roughly 
half that for the LU decomposition. 

There are other uses for this decomposition. 

•  Random number generation 

Draw realizations from µ Σ( , )pN  where 
Σ = TU U . 

Assuming that you can draw ~ (0, )pZ N I . 

Then µ Σ~ ( , )T
pU Z N . 
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Note: U can be any matrix satisfying 
Σ = TU U , but the Choleski decomposition is 
often a good way of getting it. 

U is sometimes referred to as a matrix 
square root.  Note it is not unique, unless A 
is diagonal. 

•  Variance calculations 

Often variance = −1Tb A b .   

e.g., A is the information matrix associated 
with θ̂  and your interested in θ̂Tb . 

Or as in the regression  

β σ −= 2 1ˆVar( ) ( )T T Tc c X X c . 
−1Tb A b  can be determined by 

1) Solve =TU d b  by forward substitution 

2) − =1T Tb A b d d  
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Sweep Operator 

An approach for least squares problems. 

Allows for simultaneous computation of β̂ , 
β̂Var( ), and SSE = − −ˆ ˆ( ) ( )Ty y y y . 

It is also useful for dealing with calculations 
involving conditional Normal distributions. 

Suppose = ( )ijA a  is an m × m symmetric matrix. 

Sweeping on the kth diagonal entry akk ≠ 0 of A 
yields a new symmetric matrix =ˆ ˆ( )ijA a  with 
entries 

= −

=

=

= −
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ˆ
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a
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for i ≠ k and j ≠ k. 



10 

This action can be undone with inverse 
sweeping on the kth diagonal entry.  Inverse 
sweeping yields a matrix =

�

�

( )ijA a  with entries 

= −

= −

= −

= −

�

�

�

�
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If all m diagonal entries are swept, the final 
result is related to −1A . 

Both sweeping and inverse sweeping preserve 
symmetry, so the calculations only need to be 
done for either the upper or lower triangular 
part of A. 

Note: The sweep operator is closely tied to 
Gaussian elimination.  Actually it is a 
symmetrized version of Gauss-Jordan pivoting. 
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Why is the sweep operator interesting? 

Proposition 7.5.2 

Let the symmetric matrix A be partitioned as 

� �
= � �
� �

11 12

21 22

A A
A

A A
 

If possible, sweeping on the diagonal entries of 
11A  yields 

− −

− −

� �−
= � �−� �

1 1
11 11 12

1 1
21 11 22 21 11 12

ˆ A A A
A

A A A A A A
 

So the sweeping rule on blocks conforms to the 
same rules as sweeping on the matrix entry by 
entry. 

Also, if you can sweep on the diagonal entries 
in more than one order, you get the same 
answer. 

Proof:  See Lange, page 83. 

Let X be multivariate normal and partition X 
and its mean and variance so that 

µ
µ

µ
Σ Σ� 	 � �� 	

= = Σ =
 �
 � � �Σ Σ� 
 � 
 � �
; ;Y Y YZ

Z ZY Z

Y
X

Z
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Lets sweep the ΣY  part of Σ.  The result based 
on the above is 

− −

− −

� �−Σ Σ Σ
Σ = � �Σ Σ Σ − Σ Σ Σ� �

1 1

1 1
ˆ Y Y YZ

ZY Y Z ZY Y YZ

 

The conditional distribution of Z | Y has 

µ µ−

−

= = + Σ Σ −

= = Σ − Σ Σ Σ

1

1

[ | ] ( )

Var( | )
Z ZY Y Y

Z ZY Y YZ

E Z Y y y

Z Y y
 

Exactly the quantities we need come from the 
sweep operator. 

Sweeping directly on 

µ
µ

µ µ

Σ Σ −� �
� �Σ Σ
� �

−� �� �( ) 0

Y YZ Y

ZY Z Z
T T

Y Z

y

y
 

will give the mean and variance immediately. 

It also gives us what we need in regression.   

Sweeping the upper block of 

� �
� �
� �

T T

T T

X X X y
y X y y

 

yields 
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− −

− −

� �−
� �−� �

1 1

1 1

( ) ( )

( ) ( )

T T T

T T T T T T

X X X X X y
y X X X y y y X X X X y

 

A well known result is that 

  SSE = − −ˆ ˆ( ) ( )Ty y y y  

     = −− 1( )T T T Ty y y X X X X y  

Since the sweep operator is invertible, it makes 
it easy to update the fit when a covariate is 
added or dropped. 

While the sweep algorithm is useful, it is not 
used as much as it used to be for regression 
problems. 

More popular today are methods that factor X 
directly instead of TX X . 

 

QR decomposition 

Let Q be an n × n orthogonal matrix.  Then is 
can be shown that 

β β− = −
2 2

22

T TQ y Q X y X  

where =2

2
Tx x x . 
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So minimizing either formula will give the least 
squares estimate. 

Suppose that a Q can be found such that 

×

− ×

� �
= � �
� �( )

p pT

n p p

R
Q X

0
 

where R is upper triangular and 0 is a matrix 
of all zeros. 

Partition = 1 2( , )Q Q Q  where Q1 contains the first 
p columns of Q.  Then 

ββ

β

� 	−
− = 
 �

� 


= − +

2
2 1

2
2 2

2 2

1 22 2

T
T T

T

T T

Q y R
Q y Q X

Q y

Q y R Q y

 

and β−
2

1 2

TQ y R  is minimized by β −= 1
1

ˆ TR Q y  

and thus is the least squares estimator. 

Note that − −=1 1
1 ( )T T TR Q X X X . 

One way the matrix Q can be determined with 
the use of Householder transformations.  These 
applying each of these transformations to y can 
be used to get 1

TQ y . 



15 

Then the least squares estimate is determined 
by solving β = 1

TR Q y  by backward substitution. 

This is the default approach in S-Plus for lm(), 
the approach for lm() in R, and the approach 
for regress in Matlab. 

I suspect other Statistics packages also use 
this approach for reasons that I will show in a 
few minutes. 

Aside:  The QR decomposition can be used for 
solving general systems of equations. 

The system Ax = b can be transformed to Rx = 
QTb. 

I believe this approach is the default for 
solve() is S-Plus, and the only approach used 
in R. 

 

Advantages of the QR approach in regression 

Estimation of σ 2 

The usual estimate σ 2 in regression is 

β
σ

−
=

−

2

2 2ˆ
y X

n p
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As mentioned before, we can calculate the 
numerator by  

β β− = −
2 2

2 2
ˆ ˆT Ty X Q y Q X  

Now for the least squares estimator, this is just 

β− =
2 2

2 22
ˆT T TQ y Q X Q y  

which is just the sums of squares of the last  
n – p elements of QTy.   

Aside: I believe that this underlines a popular 
proof that in regression SSE ~ χ −

2
n p . 

In addition, β σ −= 2 1ˆVar( ) ( )T T Ta a X X a . 

Since X = Q1R, TX X  = 1 1
T TR Q Q R  = RTR. 

( =1 1
T

pxpQ Q I  since 1 1
TQ Q  is the upper p × p block 

of QTQ which is the identity matrix) 

So − −=1 1( ) ( )T T T Ta X X a a R R a  = − 21

2
( )TR a . 

This can be easily calculated by a backward 
substitution followed by summing the squared 
terms. 
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Also important in regression is the “hat” matrix 
−= 1( )T TH X X X X , 

which is involved with  

•  fitted values: =ŷ Hy  

•  residuals: = −( )e I H y  

•  variances of fits: σ= 2ˆVar( )y H  

•  variance of residuals: σ= −2Var( ) ( )e I H  

•  influence statistics (leverages, deleted 
residuals, changes in fits, Cook’s distance, 
etc) 

This matrix can be calculated by H = 1 1
TQ Q . 

Sequential Sums of Squares 

Most statistics packages, as part of their 
regression output, include sequential sums of 
squares as part of there output.  For example, 
from R 
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> anova(swiss.lm) 

Analysis of Variance Table 

Response: Infant.Mortality 

            Df  Sum Sq Mean Sq F value   Pr(>F)    

Education    1   3.850   3.850  0.5585 0.458920    

Agriculture  1  10.215  10.215  1.4820 0.230103    

Fertility    1  79.804  79.804 11.5780 0.001454 ** 

Residuals   43 296.386   6.893                     

These can also be determined easily as 
−= �1 2 1

T
p pQ H H H H , where Hj is the 

Householder transformation based on the jth 
column of X, so. 

−= �1 2 1
T

p pQ y H H H H y , 

If we only use the first j, 

−= �

( )
1 2 1

j
j jy H H H H y , 

this will give us the information on the first 
using only the first j predictors and. 

( )β β
= +

= ��

2( )
1

1

( , , )
n

j
j i

i j

SSE y  

( )β β β − =�

2( )
1 1( | , , ) j

j j jSSE y  
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Another situation where this approach can be 
useful for model building, in particular, forward 
stepwise procedures. 

Assume that you have j variables in the model 

Interested in which of the remaining p – j 
variables should be added next. 

For simplicity assume that variables 1 through 
j are already in the model. 

Let ( )j
kH  be the Householder transformation for 

column k after columns 1 through j have been 
performed. 

Then =( , ) ( ) ( )k j j j
ky H y  contains the residual 

information when variable k is added to the 
model. 

( )+

2( , )
1

k j
jy  measures the improvement in the fit by 

adding variable k to the model. 

Stepwise deletion can be also be done through 
the use of Householder transformations, but 
it’s not as efficient and usually isn’t done that 
way. 
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Computational efficiency of QR 

QR is not the most computationally efficient 
algorithm.   

•  The LU decomposition to solve Ax = b needs 
about half as many operations as QR. 

•  Using Choleski to solve the normal 
equations in least squares again requires 
about half the computions as QR. 

However QR is often preferred for its numerical 
stability, not it efficiency.  Also for the 
regression case, it brings a lot more along as 
well. 

 

Additional reference: 

Gray R (2003). Bio 248: Advanced Statistical 
Computing - Course Notes. These are the 
lecture notes for a course offered by Robert 
Gray in the Harvard School of Public Health. 

These are available on the course web site on 
the Books and Articles page of the References 
section of the site. 


