
1

Solving Linear Systems and Computational
Matrix Algebra

Want to solve the system of linear equations

Ax = b

This occurs many places in Statistics

• Linear regression: β =ˆT TX X X y

• Non-linear least squares, Generalized
Linear Models, iteratively reweighted least
squares.

• Optimization and root finding

Newton-Raphson in the multivariate setting
has the form

−
− − −= − 1
1 1 1() ()n n n nx x D x g x

While the last case doesn’t look like it, it fits
into this problem since −

− −
1

1 1() ()n nD x g x is the
solution to − −=1 1() ()n nD x y g x .

Now, assuming that everything is nice (things
are full rank, A is invertible, etc), the problem
is easily solved by finding −1A and calculating

−= 1x A b

2

However this is usually a suboptimal approach

• It has a higher computational burden

• Numerically less stable – additional
computational errors creep in

Instead is usually preferable to solve the
system of equations directly.

For example, the code in S-Plus and R for
fitting linear models, l m() , uses this approach,
though their implementations are slightly
different.

In S-Plus, you can base the calculations on the
QR (default), Choleski, or Singular Value (SVD)
decompositions. In R, only the QR approach is
available.

More generally, if you want to invert a matrix in
S-Plus/R you use the sol ve() command.

In Matlab, to avoid calculating unnecessary
determinants, they have created matrix
functions / (mldivide) and \ (mrdivide).

A/ B is equivalent to −1AB

A\ B is equivalent to −1A B

Actually A/ B is done by (B’ \ A’) ’ .

3

From the Matlab help page for inv, the matrix
inversion function:

On a 300 MHz, laptop computer the statements

n = 500;
Q = orth(randn(n,n));
d = logspace(0,-10,n);
A = Q*diag(d)*Q';
x = randn(n,1);
b = A*x;
tic, y = inv(A)*b; toc
err = norm(y-x)
res = norm(A*y-b)

produce

elapsed_time = 1.4320
err = 7.3260e-006
res = 4.7511e-007

while the statements

tic, z = A\b, toc
err = norm(z-x)
res = norm(A*z-b)

produce

elapsed_time = 0.6410
err = 7.1209e-006
res = 4.4509e-015

4

A is a matrix with a high condition number
(1010), which is expected to have numerical
accuracy problems.

The accuracy of both procedures is similar
(based on err lines)

A\ b is much faster. Usually the speed increase
is by a factor of 2 to 3.

The errors from a residual point of view (A* z–b,
where z is a solution of A* x = b), the residuals
based on A\ b are much smaller.

Wide range of approaches for solving Ax = b,
some which depend on the form of A.

Often in problems in Statistics, A will be
symmetric, as with TX X or covariance
matrices.

This structure can be exploited to achieve more
efficient solutions.

5

LU Decomposition and Gaussian Elimination

Any square nonsingular matrix A can be
factored as LU = A, where L is lower triangular
and U is upper triangular.

The procedures for creating these matrices are
equivalent to the Gaussian Elimination
procedure taught in every linear/matrix
algebra class.

So to solve the system via this decomposition
can be done in two steps

1) Solve Ly = b by forward substitution

2) Solve Ux = y by back substitution.

To give an idea of how backward and forward
substitution work, let

� � � � � �
� � � � � �= = =
� � � � � �
� � � � � �� � � � � �

1

2

3

1 2 3 11

4 5 ; 14

6 12

x
U x x y

x

Then for backward substitution

= � =
+ × = � =

+ × + × = � =

3 3

2 2

1 1

6 12 2

4 5 2 14 1

1 2 1 3 2 11 3

x x

x x

x x

6

Forward substitution is similar.

S-Plus/R has forwardsolve and backsolve
for dealing with triangular matrices. I haven’t
been able to find the routines, but they must
be there to get L and U.

Now this approach is useful for any square
nonsingular matrix, no other assumptions are
needed.

To determine L and U, there are recursive
formulas for them which just involve simple
arithmetic.

For many of the problems we might be
interested in, this approach is often of little
interest.

Choleski decomposition

Definition: A matrix A is positive definite if
≥ 0Tx Ax for all x and equality only holds for

the 0 vector.

For example, most variance matrices are
positive definite (though some are positive
semidefinite). Also TX X from linear models are
positive definite.

7

Assume that A is symmetric and positive
definite.

The Choleski decomposition factors A as

= TA U U

where U is upper triangular. U can be
determined by a simple recursive formula.

Thus Ax = b can easily be solved by the steps

1) Solve =TU y b by forward substitution

2) Solve =Ux y by backwards substitution

The same as for the LU decomposition.

One advantage is the computation burden for
getting the Choleski decomposition is roughly
half that for the LU decomposition.

There are other uses for this decomposition.

• Random number generation

Draw realizations from µ Σ(,)pN where
Σ = TU U .

Assuming that you can draw ~ (0,)pZ N I .

Then µ Σ~ (,)T
pU Z N .

8

Note: U can be any matrix satisfying
Σ = TU U , but the Choleski decomposition is
often a good way of getting it.

U is sometimes referred to as a matrix
square root. Note it is not unique, unless A
is diagonal.

• Variance calculations

Often variance = −1Tb A b .

e.g., A is the information matrix associated
with θ̂ and your interested in θ̂Tb .

Or as in the regression

β σ −= 2 1ˆVar() ()T T Tc c X X c .
−1Tb A b can be determined by

1) Solve =TU d b by forward substitution

2) − =1T Tb A b d d

9

Sweep Operator

An approach for least squares problems.

Allows for simultaneous computation of β̂ ,
β̂Var(), and SSE = − −ˆ ˆ() ()Ty y y y .

It is also useful for dealing with calculations
involving conditional Normal distributions.

Suppose = ()ijA a is an m × m symmetric matrix.

Sweeping on the kth diagonal entry akk ≠ 0 of A
yields a new symmetric matrix =ˆ ˆ()ijA a with
entries

= −

=

=

= −

1
ˆ

ˆ

ˆ

ˆ

kk
kk

ik
ik

kk

kj
kj

kk

ik kj
ij ij

kk

a
a

a
a

a

a
a

a

a a
a a

a

for i ≠ k and j ≠ k.

10

This action can be undone with inverse
sweeping on the kth diagonal entry. Inverse
sweeping yields a matrix =

�

�

()ijA a with entries

= −

= −

= −

= −

�

�

�

�

1
kk

kk

ik
ik

kk

kj
kj

kk

ik kj
ij ij

kk

a
a

a
a

a

a
a

a

a a
a a

a

If all m diagonal entries are swept, the final
result is related to −1A .

Both sweeping and inverse sweeping preserve
symmetry, so the calculations only need to be
done for either the upper or lower triangular
part of A.

Note: The sweep operator is closely tied to
Gaussian elimination. Actually it is a
symmetrized version of Gauss-Jordan pivoting.

11

Why is the sweep operator interesting?

Proposition 7.5.2

Let the symmetric matrix A be partitioned as

� �
= � �
� �

11 12

21 22

A A
A

A A

If possible, sweeping on the diagonal entries of
11A yields

− −

− −

� �−
= � �−� �

1 1
11 11 12

1 1
21 11 22 21 11 12

ˆ A A A
A

A A A A A A

So the sweeping rule on blocks conforms to the
same rules as sweeping on the matrix entry by
entry.

Also, if you can sweep on the diagonal entries
in more than one order, you get the same
answer.

Proof: See Lange, page 83.

Let X be multivariate normal and partition X
and its mean and variance so that

µ
µ

µ
Σ Σ� 	 � �� 	

= = Σ =
 �
 � � �Σ Σ�
 �
 � �
; ;Y Y YZ

Z ZY Z

Y
X

Z

12

Lets sweep the ΣY part of Σ. The result based
on the above is

− −

− −

� �−Σ Σ Σ
Σ = � �Σ Σ Σ − Σ Σ Σ� �

1 1

1 1
ˆ Y Y YZ

ZY Y Z ZY Y YZ

The conditional distribution of Z | Y has

µ µ−

−

= = + Σ Σ −

= = Σ − Σ Σ Σ

1

1

[|] ()

Var(|)
Z ZY Y Y

Z ZY Y YZ

E Z Y y y

Z Y y

Exactly the quantities we need come from the
sweep operator.

Sweeping directly on

µ
µ

µ µ

Σ Σ −� �
� �Σ Σ
� �

−� �� �() 0

Y YZ Y

ZY Z Z
T T

Y Z

y

y

will give the mean and variance immediately.

It also gives us what we need in regression.

Sweeping the upper block of

� �
� �
� �

T T

T T

X X X y
y X y y

yields

13

− −

− −

� �−
� �−� �

1 1

1 1

() ()

() ()

T T T

T T T T T T

X X X X X y
y X X X y y y X X X X y

A well known result is that

 SSE = − −ˆ ˆ() ()Ty y y y

 = −− 1()T T T Ty y y X X X X y

Since the sweep operator is invertible, it makes
it easy to update the fit when a covariate is
added or dropped.

While the sweep algorithm is useful, it is not
used as much as it used to be for regression
problems.

More popular today are methods that factor X
directly instead of TX X .

QR decomposition

Let Q be an n × n orthogonal matrix. Then is
can be shown that

β β− = −
2 2

22

T TQ y Q X y X

where =2

2
Tx x x .

14

So minimizing either formula will give the least
squares estimate.

Suppose that a Q can be found such that

×

− ×

� �
= � �
� �()

p pT

n p p

R
Q X

0

where R is upper triangular and 0 is a matrix
of all zeros.

Partition = 1 2(,)Q Q Q where Q1 contains the first
p columns of Q. Then

ββ

β

� 	−
− =
 �

�

= − +

2
2 1

2
2 2

2 2

1 22 2

T
T T

T

T T

Q y R
Q y Q X

Q y

Q y R Q y

and β−
2

1 2

TQ y R is minimized by β −= 1
1

ˆ TR Q y

and thus is the least squares estimator.

Note that − −=1 1
1 ()T T TR Q X X X .

One way the matrix Q can be determined with
the use of Householder transformations. These
applying each of these transformations to y can
be used to get 1

TQ y .

15

Then the least squares estimate is determined
by solving β = 1

TR Q y by backward substitution.

This is the default approach in S-Plus for lm(),
the approach for lm() in R, and the approach
for regress in Matlab.

I suspect other Statistics packages also use
this approach for reasons that I will show in a
few minutes.

Aside: The QR decomposition can be used for
solving general systems of equations.

The system Ax = b can be transformed to Rx =
QTb.

I believe this approach is the default for
solve() is S-Plus, and the only approach used
in R.

Advantages of the QR approach in regression

Estimation of σ 2

The usual estimate σ 2 in regression is

β
σ

−
=

−

2

2 2ˆ
y X

n p

16

As mentioned before, we can calculate the
numerator by

β β− = −
2 2

2 2
ˆ ˆT Ty X Q y Q X

Now for the least squares estimator, this is just

β− =
2 2

2 22
ˆT T TQ y Q X Q y

which is just the sums of squares of the last
n – p elements of QTy.

Aside: I believe that this underlines a popular
proof that in regression SSE ~ χ −

2
n p .

In addition, β σ −= 2 1ˆVar() ()T T Ta a X X a .

Since X = Q1R, TX X = 1 1
T TR Q Q R = RTR.

(=1 1
T

pxpQ Q I since 1 1
TQ Q is the upper p × p block

of QTQ which is the identity matrix)

So − −=1 1() ()T T T Ta X X a a R R a = − 21

2
()TR a .

This can be easily calculated by a backward
substitution followed by summing the squared
terms.

17

Also important in regression is the “hat” matrix
−= 1()T TH X X X X ,

which is involved with

• fitted values: =ŷ Hy

• residuals: = −()e I H y

• variances of fits: σ= 2ˆVar()y H

• variance of residuals: σ= −2Var() ()e I H

• influence statistics (leverages, deleted
residuals, changes in fits, Cook’s distance,
etc)

This matrix can be calculated by H = 1 1
TQ Q .

Sequential Sums of Squares

Most statistics packages, as part of their
regression output, include sequential sums of
squares as part of there output. For example,
from R

18

> anova(swiss.lm)

Analysis of Variance Table

Response: Infant.Mortality

 Df Sum Sq Mean Sq F value Pr(>F)

Education 1 3.850 3.850 0.5585 0.458920

Agriculture 1 10.215 10.215 1.4820 0.230103

Fertility 1 79.804 79.804 11.5780 0.001454 **

Residuals 43 296.386 6.893

These can also be determined easily as
−= �1 2 1

T
p pQ H H H H , where Hj is the

Householder transformation based on the jth
column of X, so.

−= �1 2 1
T

p pQ y H H H H y ,

If we only use the first j,

−= �

()
1 2 1

j
j jy H H H H y ,

this will give us the information on the first
using only the first j predictors and.

()β β
= +

= ��

2()
1

1

(, ,)
n

j
j i

i j

SSE y

()β β β − =�

2()
1 1(| , ,) j

j j jSSE y

19

Another situation where this approach can be
useful for model building, in particular, forward
stepwise procedures.

Assume that you have j variables in the model

Interested in which of the remaining p – j
variables should be added next.

For simplicity assume that variables 1 through
j are already in the model.

Let ()j
kH be the Householder transformation for

column k after columns 1 through j have been
performed.

Then =(,) () ()k j j j
ky H y contains the residual

information when variable k is added to the
model.

()+

2(,)
1

k j
jy measures the improvement in the fit by

adding variable k to the model.

Stepwise deletion can be also be done through
the use of Householder transformations, but
it’s not as efficient and usually isn’t done that
way.

20

Computational efficiency of QR

QR is not the most computationally efficient
algorithm.

• The LU decomposition to solve Ax = b needs
about half as many operations as QR.

• Using Choleski to solve the normal
equations in least squares again requires
about half the computions as QR.

However QR is often preferred for its numerical
stability, not it efficiency. Also for the
regression case, it brings a lot more along as
well.

Additional reference:

Gray R (2003). Bio 248: Advanced Statistical
Computing - Course Notes. These are the
lecture notes for a course offered by Robert
Gray in the Harvard School of Public Health.

These are available on the course web site on
the Books and Articles page of the References
section of the site.

