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Singular Value Decomposition (SVD) 

Considered the most stable method for 
calculating solutions to system of linear 
equations and least squares estimators. 

X is an n × p matrix with n � p.  The SVD of X 
is 

= TX UDV  

where 

• U is an n × p matrix with orthonormal 
columns 

• D is an p × p diagonal matrix with dii � 0 

• U is an p × p orthogonal matrix 

We will assume that d11 � … � dpp. 

Note there is an alternate form of the 
decomposition where U is an n × n orthogonal 
matrix and D is extended to an n × p matrix by 
adding n – p rows with all elements set to 0. 

The S-Plus/R function svd() uses the first 
form, whereas the Matlab function svd() uses 
the second form (use svd(X,0) to get the first 
form). 
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I’ll use the first form, since it’s a bit easier to 
talk about. 

Knowing SVD of X immediately gives us what 
we need to know about TX X  since 

= = 2T T T TX X VDU UDV VD V  

So V are the eigenvectors of TX X  and the 2
iid  

are the corresponding eigenvalues. 

If X is a square, non-singular matrix, then both 
U and V are orthogonal matrices and 

− −=1 1 TX VD U  

As this is also the SVD of −1X , the singular 
values of −1X  are just the reciprocals of the 
singular values of X. 

If X is square, symmetric and positive definite, 
U = V as the SVD reduces to the usual 
eigenvalue/eigenvector decomposition of X. 

This won’t hold as X moves from symmetry and 
positive definiteness. 
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Generalized Inverses 

A matrix −X  is a generalized inverse of a matrix 
X if  

− =XX X X  

Note that −X  is usually not unique, except if X 
is invertible.  See Rao, 1973 section 1b for the 
forms of all generalized inverses of X. 

Sometimes it’s useful to pick a generalized 
inverse that satisfies 

− − −=X XX X  

This condition will not hold for some 
generalized inverses. 

The most popular generalized inverse is the 
Moore-Penrose generalized inverse which 
satisfies 

− −= ( )TX X X X  and − −= ( )TXX XX  

The Moore-Penrose generalized inverse can 
easily gotten from the SVD 
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Let D+ be the diagonal matrix with entries 
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Then the Moore-Penrose generalized inverse is 
+ += TX VD U  

Solving Ax = b via the SVD 

If A is invertible, then −1 TVD U b  is the route to 
go since −1 TD U b  involves only p divisions with 

TU b  since D is diagonal. 

The more interesting case occurs if A is 
singular. 

If b is not in the range space of A, then there is 
no solution. 

Otherwise there are an infinite number of 
solutions, with +A b  being one. 

The other solutions will be of the form 

α+

= +

+ �
1

p

j j
j k

A b V  

where >�11, , 0kkd d  and + + = = =�1, 1 0k k ppd d  
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SVD and Least Squares 

Want to look at two cases 

1) rank( )X  = p 

2) rank( )X  < p 

1) rank( )X  = p 

This is the usual regression situation. 

= 2T TX X VD V  

so 

β −= 1ˆ TVD U y  

In addition, other useful quantities can be 
calculated in terms of V and D, though 
sometimes, its also useful to have X and y 
around as well. 

For example, β σ −= 2 2ˆVar( ) TVD V . 

For the “hat” matrix, there are a couple of ways 
to do it.  One is 

−= 2 T TH XVD V X  

This form is more useful if you only need the 
leverages hii, the diagonal entries of H since 
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−= 2T T T
ii i ih x VD V X x  

H can also be gotten directly from the SVD 
since 

= TH UU  

2) rank( )X  < p 

This situation occurs when some of the 
predictors are linear combinations of the 
others. 

One situation where this can occur is with the 
ANOVA model 

µ τ ε= + +ij i ijy  

when no constraints are put on the τ 'si  (which 
corresponds to dropping columns from X). 

The least squares solution, based on the 
generalized inverse 

β + += =ˆ TVD U y X y  

still satisfies the normal equations 

β =T TX X X y  

For the ANOVA problem rank( )X  = p – 1. 



7 

In S-Plus/R, this isn’t a problem since they put 
constraints based on the setting of 
opt i ons( ) $cont r ast s .  (See Statistical Models 
in S or Modern Applied Statistics with S for a 
discussion) 

However in SAS, no constraints are used 
directly if this model is fit with PROC GLM. 

In the output, they note the problem and 
mention a generalized inverse is used. 

However underlying the SAS output is the 
constraint to force the last group to have τ̂k = 0 
(equivalent to ‘ cont r . t r eat ment ’  in S-
Plus/R) 

 
Mar gar i ne Exper i ment                    18: 55 Tuesday,  Febr uar y 17,  2004   3 
 
The GLM Pr ocedur e 
  
                                      St andar d 
Par amet er            Est i mat e             Er r or     t  Val ue    Pr  > | t |  
 
I nt er cept        0. 0047940406 B      0. 00005339      89. 79      <. 0001 
br and     1     0. 0008799749 B      0. 00007551      11. 65      <. 0001 
br and     2     - . 0005979730 B      0. 00007551      - 7. 92      <. 0001 
br and     3     0. 0010435329 B      0. 00007551      13. 82      <. 0001 
br and     4     0. 0000000000 B       .                 .          .      
 
NOTE:  The X' X mat r i x  has been f ound t o be s i ngul ar ,  and a gener al i zed  
      i nver se was used t o sol ve t he nor mal  equat i ons.   Ter ms whose  
      est i mat es ar e f ol l owed by t he l et t er  ' B'  ar e not  uni quel y est i mabl e.  

Exactly what generalized inverse they are using 
isn’t clear.  It’s not the Moore-Penrose as that 
doesn’t force one of the coefficients to 0. 
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However, given that any valid solution can be 
gotten from  

α α+ +

= + = +

+ = +� �
1 1

( )
p p

T T T
j j j j

j k j k

X X X y V VD U y V  

they may start with it and then figure out the 
α j  needed to set certain components to 0. 

For the one way ANOVA problem, it appears 
that the Moore-Penrose solution is equivalent 
to the constraint µ τ=� i . 

Since the Vj corresponding to the 0 singular 
values are a basis for the null space of X, 
checking these will give you the constraints 
underlying the Moore-Penrose solution.  For 
one-way ANOVA, it appears that 

∝ − − −�[1 1 1 1]T
pV  

which corresponds to the constraint µ τ=� i . 

(Actually SAS uses a modified sweep routine 
instead of SVD or QR in PROC GLM, but the 
previous describes how they would do things if 
they used SVD instead.) 
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Estimable functions ( βTl ) 

A function βTl  is estimable from data if l is in 
the range space of XT.  Since the range space of 
XT is the same as the range space of VD, it 
follows that the columns of V corresponding to 

iid  > 0, for a basis for the space of estimable 
functions. 

Iterative methods for solving Ax = b 

If the matrix A is sparse (most entries are 0), it 
can be preferable to solve the system by the 
iterative scheme 

+ = +( 1) ( )k kMx Nx b  

where A = M – N. 

If ( )kx  converges to ∞( )x , then ∞ =( )Ax b  

This scheme will converge if all the eigenvalues 
λ j  of −1M N  satisfy λ j  < 1.   

Note that this is equivalent to the conditions of 
proposition 6.4.1 of Lange, where he only 
considers the situation M = I and N = I – A. 

This sort of scheme will be reasonable if ( )kx  
can be easily computed. 
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One scheme (Gauss-Seidel) that allows this is 
as follows 

•  Let D be the diagonal matrix with entries iia  

•  Let U be the matrix with entries =ij iju a  for  
i < j and 0 otherwise (elements above the 
main diagonal) 

•  Let L be the matrix with entries =ij iju a  for  
i > j and 0 otherwise (elements below the 
main diagonal) 

Then A = L + D + U 

Let M = D + L and N = -U. 

The iterates +( 1)k
jx  satisfy 

+ +

< >

� �
= − −� �

	 

� �( 1) ( 1) ( )1k k k

j j jl l jl l
l j l jjj

x b a x a x
a
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Vector Norms 

Euclidean norm = �
2

2 ix x  

There are other norms that can be useful 

A norm on �m  must satisfy the following 4 
conditions 

1) ≥ 0x  

2) = 0x  iff x = 0 

3) =cx c x  for every real number c 

4) + ≤ +x y x y  (triangle inequality) 

Other common norms are 

L1: 
=

=�1
1

m

i
i

x x  

L∞: 
∞ ≤ ≤

=
1
max ii m

x x  

These are all special cases of 

Lp: = �
pp

ip
x x  
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It ends up that all of these norms induce the 
same topology on the space �m  due to the 
following proposition (6.2.1 of Lange) 

Let x  be any norm of �m .  The there exist 
positive constants such that 

≤ ≤
1l l u

k x x k x  

Two consequences of this proposition are 

•  ≤
q p

x x  

•  
−≤

1 1
p q

p q
x m x  

when p < q and p and q are taken from {1, 2, 
∞}.  (Actually I believe the result holds when p 
and q are both � 1) 

So a consequence of these, is that you can pick 
the norm which makes your problem the 
easiest to deal with. 
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Matrix Norms (for square matrices) 

Want them to have properties 1 through 4 of 
vector norms, plus 

5) ≤AB A B  for any product of m × m 
matrices 

One possible matrix norm is the Euclidean 
norm 

= = =��
2 tr( ) tr( )T T
ijE

A a AA A A  

Another way of getting matrix norms is by 
inducing them from vector norms via 

≠

=

=

=

0

1

sup

sup

x

x

Ax
A

x

Ax
 

Note that the second form of the definition 
implies that I  = 1 for any induced matrix 
norm 

Since =
E

I m , 
E

A  and 
2

A  are different 
norms 
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For the popular choices of p, the matrix norms 
are 

•  = �1
max j iji

A a   (maximum column sum) 

•  ρ=
2

( )TA A A  which reduces to ρ( )A  when 
A is symmetric 

•  
∞

= �maxi ijj
A a   (maximum row sum) 

where ρ( )A  is the absolute value of the 
dominant eigenvalue of A.  Its sometimes 
referred to as the spectral radius of A. 

The spectral radius can be tied to any induced 
matrix norm through proposition 6.3.2 as 

ρ ≤( )A A  

In addition, for any A and ε > 0, there exists 
some induced matrix norm such that 

ρ ε≤ +( )A A  

These results can be used to justify the Gauss-
Seidel scheme talked about earlier. 

Lets focus on the form + = +( 1) ( )k kx Bx b  which 
can be used to solve (I – B)x = b. 
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Underlying this scheme is the map 
= +( )f x Bx b , which satisfies 

− = −

≤ −

( ) ( ) ( )f y f x B y x

B y x
 

which is contractive if B  < 1. 

This is analogous to '( )f x  < 1 in some region 
for the fixed point methods discussed earlier. 

In fact, if we replace absolute values with 
norms, the earlier proof of the functional 
iteration results generalize to this vector 
setting. 

Thus the iterates ( )kx  converge to the unique 
solution of (I – B)x = b. 

It also follows that I – B must be invertible as 
well. 

The results are a consequence of proposition 
6.4.1 
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Let B be an arbitrary matrix with special radius 
ρ( )B .  Then ρ( )B  < 1 if and only if B  < 1 for 
some induced matrix norm.  B  < 1 implies 

a) 
→∞

=lim 0n

n
B  

b) 
∞

−

=

− = �
1

0

( ) n

n

I B B  

c) −≤ − ≤
+ −

11 1
( )

1 1
I B

B B
 

Part a) follows from ≤ nnB B  

Part b) come from starting the iteration scheme 

at (0)x  which gives 
−

=

=�
1

( )

0

n
n i

i

x B b .  If we pass to 

the limit, we get 
∞

−

=

− =�
1

0

( ) i
i

I B b B b .  Since b is 

arbitrary, the result holds. 

Part c) is useful is that is allows us to put 
bounds on the norm of the solution of 
(I – B)x = b. 
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Condition numbers 

While at its simplest level, a square matrix is 
either singular or not, the situation is a bit 
more complicated. 

Lets look at two systems of equations 

� � � � � �
=
 �
 � 
 �

� �� � � �

1 1 2

1 1.0001 2.0001

x
y

 

and 

� � � � � �
=
 �
 � 
 �

� �� � � �

1 1 2

1 1.0001 2.0002

u
v

 

As can be easily seen the solutions are 

� � � �
=
 � 
 �

� � � �

1

1

x
y

 and 
� � � �

=
 � 
 �
� � � �

0

2

u
v

 

Underlying the problem here is that the matrix 
� �

= 
 �
� �

1 1

1 1.0001
A  

is very close to the singular matrix 

� �
= 
 �
� �

1 1
'

1 1
A  
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So let Ax = b and + ∆ = + ∆( )A x x b b  be the two 
systems of interest. 

Then by the definition of the induced matrix 
norm 

≤b A x  

−∆ ≤ ∆1x A b  

These imply 

−∆ ∆ ∆
≤ =1 cond( )

x b b
A A A

x b b
 

where −= 1cond( )A A A  is known as the 

condition number. 

Instead of changing b, lets change A giving the 
systems Ax = b and + ∆ + ∆ =( )( )A A x x b . 

Then it can be shown that  
−∆ = − ∆ + ∆1 ( )x A A x x  

so that 
−∆ = ∆ + ∆1x A A x x  

which implies 
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∆ ∆
≤

+ ∆
cond( )

x A
A

x x A
 

Going through a bunch of algebra gives 

( )
∆ ∆

≤
− ∆

cond( )
cond( )

x A
A

x A A A
 

Note that these results hold for whatever 
matrix norm is being used.  However usually 
condition numbers based on the 

2
A  norm are 

used. 

For this norm, 2cond ( )A  is the ratio of the 
largest and smallest eigenvalues of A. 

For the example above λ1 = 2.00005 and λ2  = 
0.00005 giving 2cond ( )A  = 40002. 

Why care about condition numbers? 

The numerical stability of many matrix 
routines can be described through the 
condition number. 

For example, the LU decomposition can become 
unstable with matrices with large condition 
numbers, particularly when a poor choice of 
pivots are used. 


