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Newton’s Method and Scoring 

Optimization in multiparameter situation 

As before, let θ( )L  be the log likelihood function. 

So we want to find θ such that θ∇ ( )L  = 0 

Similarly to before, take a Taylor series 
approximation of this giving 

θ θ θ θ θ∇ = ∇ + −2( ) ( ) ( )( )n n nL L d L  

where θ2 ( )d L  is the matrix of second partial 
derivatives of θ( )L . 

Notation:  For some reason, Lange defines 

θ θ= ∇( ) ( )TdL L , 

the gradient as a row vector. 

This leads to an updating formula of 

( )θ θ θ θ−
+ = − 2 1
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which is a direct analogue to the univariate 
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Example: MLEs for gamma distribution 
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So the log likelihood for a sample of size n is 
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Define ( ) ( )ψ = Γlog
d

k k
dk

.  This function is 

sometimes known as the psi function or the 
digamma function.  Its derivative ( )ψ 'k  is often 
referred to as the trigamma function. 

Then the derivatives of the log likelihood are 
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Thus Newton is easy to implement with 
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Implementation notes: 
 

Function S-Plus/R Matlab 

( )ψ k  digamma(k) psi(k) or 
psi(0,k) 

( )ψ 'k  trigamma(k) psi(1,k) 

 



4 

To exhibit the properties of Newton-Raphson in 
this case n = 100 observations were generated 
from a gamma distribution with λ = 5 and k = 
10. 
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For comparison, the method of moments 
estimators are 

λ =
2
x

MOM

s
x

 = 5.8785 

=
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s
 = 8.4876 

The maximum likelihood estimates are 

λ̂  = 5.6831 

k̂  = 8.7794 

and the observed information is 

� �
= � �
� �

27.1825 17.5959

17.5959 12.0635obsI  

which gives  
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The sequence of iterations for this example, 
based on a convergence criterion of θ θ+ ∞

−1n n  
is 

Iteration λn kn 

0 5.0000 8.0000 

1 5.3097 9.2384 

2 5.5421 8.9787 

3 5.6705 8.7937 

4 5.6829 8.7798 

5 5.6831 8.7794 

6 5.6831 8.7794 

 

Convergence of multiparameter Newton-
Raphson 

Like the single parameter case, this procedure 
has quadratic convergence, so it is usually fast, 
assuming that you don’t make any coding 
errors. 

However accessing convergence during a run is 
a bit more difficult. 

Since there are many parameters, they may be 
on different scales. 
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An example is related to question 3 on the first 
assignment.  It involves estimating the lifetime 
risk for disease (0 < p < 1) and the mean and 
variance of the age of onset distribution for 
those at risk for the disease. 

So using a convergence criterion of  

θ θ+ −1
i i
n n  < 0.01 

might be fine when talking about a mean age 
around 50, but isn’t as good when talking 
about a lifetime risk around 0.1 

So often it makes more sense to use something 
like 

θ θ
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though possible in combination with one based 
on θ θ+ −1

i i
n n  as well. 
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There are two potential problems with Newton’s 
method. 

First, it may be computationally expensive to 
calculate the observed information – θ2 ( )d L . 

Second, when θn  is far from θ̂ , Newton may 
head for a minimum instead of a maximum. 

Newton’s method is not an ascent algorithm, 
e.g. 

θ θ+ >1( ) ( )n nL L  

does NOT have to hold. 

There are procedures that are ascent 
algorithms, such as EM. 

This problem usually occurs when – θ2 ( )nd L  is 
not positive definite. 

One solution is to replace – θ2 ( )nd L  with a 
positive definite approximation An. 

With this change, the proposed increment 
θ θ−∆ = 1 ( )Tn n nA dL , possibly contracted, forces an 

increase in θ( )L . 
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This can be justified by 

( )θ α θ θ θ α θ α

α θ θ α−

+ ∆ − = ∆ +

= +1
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where the error ratio α α( )/o  tends to 0 as α 
goes to 0. 

How to chose α? 

Common approach is half step back tracking. 

Try α = 1.  If leads to increase in likelihood, 
stop. 

If not, try α = ½, then ¼, etc until you get an 
increase in θ( )L . 

How to choose An? 

Steepest ascent: An = I. 

Scoring: 

Replace observed information with expected 
information ( ) ( )θ θ� �= −� �

2J E d L . 

Since ( ) ( ) ( )( )θ θ θ� �= − =� �
2 T

J E d L Var dL  so ( )θJ  

is positive definite 
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The update equation for scoring is 

( ) ( )θ θ θ θ−
+ = + 1
1

T
n n n nJ dL  

(remember the sign switch) 

One thing to remember with the scoring 
algorithm is that you use the same gradient 
function, which depends on your data.  Just 
replace the information matrix. 

Since we are not using the optimal direction 
early on, the convergence is slightly slower, but 
is still quadratic.  Often this means it might 
take a couple of iterations longer to converge 
than basic Newton (as we will see in a minute) 

For the gamma example 

( )
( )
λλλ

ψ
λ

� �
� �

= � �
� �
� �� �

2

1

,
1

'

k

J k n
k

 

which is derived by replacing � ix  with its 
expectation nλk. 



11 

For the same data and convergence criterion, 
the following sequence was observed 
 

Iteration λn kn 

0 5.0000 8.0000 

1 7.8163 5.4728 

2 7.2107 6.8075 

3 5.7308 8.3167 

4 5.7952 8.6129 

5 5.6831 8.7762 

6 5.6832 8.7794 

7 5.6831 8.7794 

8 5.6831 8.7794 

Note that these are the same estimates, up to 
the number of digits produced. 

( ) ( )θ θ� �
= =� �
� �

27.1825 17.5959ˆ ˆ
17.5959 12.0635 obsJ I  

which gives  

( )λ − −� �
= = � �−� �

1 0.6592 0.9615
Var [ ]

0.9615 1.4853obsk I  
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Normally ( ) ( )θ θ≠ˆ ˆ
obsJ I , though usually they 

are close since asymptotically they are the 
same. 

There is something special with this gamma 
example which leads to the equality. 


