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Exponential Families and Scoring 

Fisher scoring is only useful when 
( ) ( )θ θ� �= −� �

2J E d L  is easy to calculate, as in 

the Gamma example. 

One class of distributions that satisfies this is 
the exponential family. 

The density takes the form of 

( ) ( ) ( ) ( ) ( )β θ γ θθ +=
Th xf x g x e  

This family of distributions includes the 
normal, binomial, poisson, gamma. 

For example, with the gamma example 
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For exponential families, the score function is 

( ) ( ) ( ) ( )θ β θ γ θ= + T
dL d h x d  
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and the Hessian is 

( ) ( ) ( ) ( )θ β θ γ θ= +2 2 2T
d L d h x d  

Note that if ( )γ θd  is a linear function, then 
Newton-Raphson and Scoring are the same. 

It can be shown that score and expected 
information can expressed in terms of 

( ) ( )µ θ � �= � �E h X  and ( ) ( )( )θΣ = Var h X . 

It can be shown that ( )θ� �� �E dL  = 0 since 
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and ( ) ( )θ ν� f x d x  = 1. 

This statement can be restated as 

( ) ( ) ( )β θ µ θ γ θ+ T
d d  = 0 

Using this gives an alternate representation 

( ) ( ) ( ) ( )θ µ θ γ θ� �= −� �
T

dL h x d  

i.e. the score is a sum of weighted residuals 
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From this we can immediately get the 
Information matrix as 

( ) ( ) ( ) ( )θ γ θ θ γ θ= ΣT
J d d  

Since it can be shown that ( ) ( ) ( )µ θ θ γ θ= Σd d , 
this implies the components of the scoring 
algorithm are 

( ) ( ) ( ) ( ) ( )
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Thus scoring for exponential families depends 
on the mean function (and its derivative) and 
the variance function of the sufficient statistic. 

Note that in the case where ( )θΣ  is not 
invertible, the above holds when a generalized 
inverse is used. 

This is important for the multinomial as 
=� 1ip  which implies a singular variance 

matrix. 
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Generalized Linear Models 

One popular situation where the exponential 
family comes up is in Generalized Linear 
Models (GLIM) (McCullagh and Nelder, 1989) 

In these models, include linear regression, logit 
and probit regression, and poisson regression. 

In these models, the sufficient statistic 
( ) =h X X  (sort of, I don’t quite agree with the 

way Lange stated this) 

The mean of X, ( )µ θ  is postulated to have the 

form ( )θTq z , where q is a monotone function.  

The inverse is q is often referred to as the link 
function. 

In this setting ( ) ( )µ θ θ= ' T Td q z z , where z is the 

vector of covariates. 

Then the score and expected information are 
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where ( )σ =2 Vari iX  

Example: Logistic Regression 

Low birth weight in Humans (Hosmer & 
Lemeshow, 1989). 

Discussed in Venables and Ripley (page 222 3rd 
edition).  Data available in dataframe birthwt 
in MASS library. 

Response variable 

≥	
= 
 <�

0 birth weight 2.5kg

1 birth weight 2.5kgiy  

   (low in dataframe) 

Predictor variable 

ix  = weight of mother (lbs) at last menstrual 
   period (lwt in dataframe) 

(In the actual data set, there are many more 
predictor variables available) 

Want a model for the probability of having a 
low birth weight child, given the mother’s 
weight. 
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The log likelihood for logistic regression is 
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In general, 

( ) ( )( ){ }θ θ θ
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Link function: 
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Mean function: 
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Variance function: 

( ) ( )= −Var 1iY p p  

µd  function: 
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These give the scoring components 

( ) ( )θ
=

−� �
= � �−� �
�

1

m
i i

i i i i

y p
dL

x y p
 

where 
θ θ

θ θ

+

+=
+

0 1

0 11

i

i

x

i x

e
p

e
 and 



8 

( ) [ ] ( ) ( )( )

[ ] ( )

θ
=

=

� �
= −� � −� �

� �
= −� �

� �

�

�

2

1

1

1 1
1 1

1

1
1 1

m

i i i
i i i i

m

i i i
i i

J x p p
x p p

x p p
x

 

Note that if you were to do Newton-Raphson, 
instead of scoring 
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For logistic regression, Newton-Raphson and 
Scoring are the same algorithms. 

You can see this has to hold since ( )σ θ=2 ' T
i iq z . 

Its actually an artifact of the piece of the log 
likelihood containing iy  being linear in the 
parameters (so iy  drops out of the 2nd partial 
derivatives) 

( ) ( ) ( )( ){ }θ θ θ θ θ
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= + − + +� 0 1 0 1
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L y x x  

This relationship will not hold for most GLIMs, 
such as Probit Regression, which is based on 
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( ) ( )
( ) ( )

θ θ
− −
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For the example, the iterations are 
 

Iteration θ0  θ1 

0 0.8 0 

1 0.5978497 -0.01204824 

2 1.0083823 -0.01410487 

3 0.9983194 -0.01405828 

4 0.9983143 -0.01405826 

5 0.9983143 -0.01405826 

This was based on the convergence criterion 
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The fitted curve showing the probability of a 
low birth weight is 
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The information and variance matrices are 

( )

( )

θ

θ

� �
= � �
� �

−� �
= � �−� �

39.386 4908.917ˆ
4908.917 638101.268

0.616682 0.004744ˆVar
0.004744 0.000038

J
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The parameter estimates and their standard 
errors are 

[ ]
( ) [ ]

θ

θ

= −

=

ˆ 0.998314 0.014058

ˆSE 0.785290 0.006170
 

For comparison, here is the output from R 
using gl m( ) . 
 
> summar y( bi r t hwt . gl m)  
 
Cal l :  
gl m( f or mul a = l ow ~ l wt ,  f ami l y = bi nomi al ,  dat a = bi r t hwt )  
 
Devi ance Resi dual s:   
    Mi n       1Q   Medi an       3Q      Max   
- 1. 0951  - 0. 9022  - 0. 8018   1. 3609   1. 9821   
 
Coef f i c i ent s:  
            Est i mat e St d.  Er r or  z val ue Pr ( >| z| )    
( I nt er cept )   0. 99831    0. 78529   1. 271   0. 2036   
l wt          - 0. 01406    0. 00617  - 2. 279   0. 0227 *  
- - -  
Si gni f .  codes:   0 ` * * * '  0. 001 ` * * '  0. 01 ` * '  0. 05 ` . '  0. 1 `  '  1  
 
( Di sper si on par amet er  f or  bi nomi al  f ami l y t aken t o be 1)  
 
    Nul l  devi ance:  234. 67  on 188  degr ees of  f r eedom 
Resi dual  devi ance:  228. 69  on 187  degr ees of  f r eedom 
AI C:  232. 69 
 
Number  of  Fi sher  Scor i ng i t er at i ons:  4 
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Even though the log likelihood is unimodal 
(since ( )θJ  is positive definite everywhere), this 
doesn’t guarantee convergence. 

For example 
 

Iteration θ0  θ1 

0 0.8 -0.3 

1 -9.4734994 0.1032548 

2 187.887804 -1.8589840 

3 NaN NaN 

In this case, the poor starting values lead to 
jumping away from the optimum and instead 
head to the minimum out at ∞. 
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The Gauss-Newton Algorithm 

An approach for models of the form 

( ) σµ β
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where iw  are known constants and ( )µ βi  will 
depend on covariates and is a nonlinear 
function of β. 

The log likelihood is of the form 

( ) ( )( )θ σ µ β
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The score and expected information are  
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Given the structure here, the scoring updates 
for β don’t depend σ 2, so they can be done 
separately. 

The update equation is 

( ) ( ) ( )( ) ( )

β β
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You can ignore the updates on σ 2 until the 
end. 

Note that the piece of the log likelihood that 
depends on β is equivalent to a weighted least 
squares criteria 

( ) ( )( )β µ β
=

= −�
2
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m

i i i
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S w y  

So minimizing ( )βS  is equivalent to 
maximizing ( )θL . 



15 

If you were to minimize ( )βS  by Newton-
Raphson, the Hessian is 

( ) ( ) ( )
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If we ignore the second term, the approximate 
Hessian is 

( ) ( ) ( )β µ β µ β
=

≈�
2

1

m
T

i i i
i

d S w d d  

which is what we get from scoring assuming 
normality. 

So we can think of the scoring updates as 
Newton-Raphson for weighted nonlinear linear 
least squares with the Hessian replaced by 
positive definite matrix. 
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Iteratively Reweighted Least Squares (IRLS) 

In some problems, the iw  are not known 
constants but functions of β, through the mean 
µi  (e.g. ( ) ( )( )β µ β=i iw f ). 

One case where this occurs is with GLIMs. 

Notice that the score function for a GLIM can 
be written as 

( ) ( ) ( )( ) ( )θ σ µ θ µ θ
−

=

= −�
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So another way of finding the parameter 
estimates is to use IRSL 

1) Estimate ( )σ θ= 21i i nw  

2) Minimize 

( ) ( )( )θ µ θ
=

= −�
2

1

m

n i i i
i

S w y  

3) Check for convergence.  If not converged go 
back to 1. 

I believe this is how many programs, including 
S-Plus and R actually fit GLIMs 


