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EM Algorithm 

(Dempster, Laird, and Rubin, 1977) 

An approach for finding MLEs and posterior 
modes. 

Based on decomposing data into observed and 
missing parts. 

The missing data might be real, a theoretical 
construct, or both. 

Let Y be the observed data and X be the 
unobserved, complete data. 

In general there is a function ( )t X Y=  that 
collapses the complete data X onto Y. 

Often ( ),X Y Z= , where Z is the missing data 

Assume that X has density ( )f X θ , and Y has 

density ( )g Y θ .  When choosing X you need to 
set it up such that 

( ) ( )
( )t X Y

g Y f X dXθ θ
=

= �  



2 

Problem: Find 

( )ˆ arg sup g yθ θ= . 

Assume that this is tough to do. 

Idea: Pick X such that ( )f X θ  is easy to 
maximize. 

Can’t deal with ( )f X θ  exactly, since X can’t be 
known with certainty. 

Instead we want to deal with an expectation 
involving it. 

The EM algorithm gives a sequence of 
estimates 0 1 2, , ,θ θ θ � by iterating the following 2 
steps. 

E-step: Calculate 

( ) ( )log ,n nQ E f X Yθ θ θ θ� �= � �, 

the conditional expectation of the complete 
data log likelihood. 

M-step: Set 

( )1 arg supn nQθ θ θ+ =  
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This scheme has the property that the 
sequence of estimators increases the observed 
data likelihood ( )g Y θ .  (To be made more 
precise later) 

Example: Linkage Analysis (Rao, 1973, pp 368-
369, Feb 4th lecture)) 
 

Phenotype Probability Counts Y 

ab λ/4 34 1y  

Ab (1 – λ)/4 18 2y  

aB (1 – λ)/4 20 3y  

AB (2 + λ)/4 125 4y  

( )1 2 3 4

1 1 2
, , , ~ Multi 197, , , ,

4 4 4 4
Y Y Y Y

λ λ λ λ� �− − +� �
� 	� 	

 �
 �

 

The likelihood and log likelihood functions are 

( )
1 2 3 41 2

4 4 4

Y Y Y Y

g Y
λ λ λλ

+− +� � � � � �= � 	 � 	 � 	

 � 
 � 
 �

 

( ) ( ) ( )
( )

1 2 3

4

log log log 1

log 2 197 log 4

g Y Y Y Y

Y

λ λ λ

λ

= + + −

+ + −
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As we’ve seen, this needs some work to 
maximize. 

Let ( )1 2 3 4 5, , , ,X X X X X X=  such that 

( )1 2 3 4 5, , , ,

1 1 1
~ Multi 197, , , , ,

4 4 4 4 2

X X X X X

λ λ λ λ� �− −� �
� 	� 	

 �
 �

 

and 1 1 2 2 3 3, ,X Y X Y X Y= = = . 

So 4Y  is being split into 2 groups. 

Notice that for this problem 4X  and 5X  don’t 
have any particular meaning.  It’s a theoretical 
construct set up to make things easy to deal 
with. 

Its also a situation where X isn’t of the form 
( ),Y Z , though it could be extended to that 
setup. 

With X, it is easy to solve for λ.  With this data 

1 4

1 2 3 4

ˆ X X
X X X X

λ +=
+ + +
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as 

( ) ( ) ( ) ( )1 4 2 3

5

log log log 1

log 2 197 log 4

f X X X X X

X

λ λ λ= + + + −

− −
 

Another way of getting this is based on 

( )1 4 1 2 3 4 ~ Bin ,X X X X X X n n λ+ + + + =  

E-step: 

( )
( ) ( ) ( )1 4 2 3log log 1 ,

n

n

Q

E X X X X Y

λ λ

λ λ λ� �= + + + −� �

 

Since most of the components of X are fixed 
given Y, this reduces to 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 2 3

4

1 2 3

4 4

1 4 2 3

log log 1

log ,

log log 1

log ,

ˆ log log 1

n

n

n

Q Y Y Y

E X Y

Y Y Y

E X Y

Y X Y Y

λ λ λ λ

λ λ

λ λ

λ λ

λ λ

= + + −

� �+ � �

= + + −

� �+ � �

= + + + −

 

where 4 4 4
ˆ , nX E X Y λ� �= � �. 

Now 4 4 4| ~ Bin ,
2

X Y Y
λ

λ
� �
� 	+
 �

 so 
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4 4 4

4

ˆ ,

2

n

n

n

X E X Y

Y

λ
λ

λ

� �= � �

=
+

 

M-step: 

1 4
1

1 2 3 4

ˆ
ˆ

ˆn

Y X
Y Y Y X

λ +
+=

+ + +
 

 

Iteration nλ  ( )log ng λ  

0 0.5 64.6297445 

1 0.608247423 67.3201705 

2 0.624321050 67.3829250 

3 0.626488879 67.3840812 

4 0.626777322 67.3841017 

5 0.626815632 67.3841021 

6 0.626820719 67.3841021 

7 0.626821394 67.3841021 

Notice that the observed data log likelihood 
increases at each step. 

The above run was based on the convergence 
criteria of 6

1 10n nλ λ −
+ − <  
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Example: Multivariate Normal with missing 
data 

Complete Data: 

( )~ , ; 1, ,i kX N V i nµ = �  

( )1, ,T
i i ikX X X= �  

( ) ( ) ( )

( ) ( )

( )

1

1

1

1 1
log log det

2 2
1

log det
2

1
trace

2
1

log det
2

1
trace 2

2

T
i i i

T
i i

T T T
i i

f X V X V X

V

V X X

V

V X X X

θ µ µ

µ µ

µ µµ

−

−

−

= − − − −

= −

� �− − −
� �

= −

� �− − +� �

 

So a set of sufficient statistics for µ and V are 

1

n

i
i

X
=
�  and 

1

n
T

i i
i

X X
=
� . 

For the complete data set up 

1

1
ˆ

n

i
i

X
n

µ
=

= �  



8 

and 

( ) ( )
1

1

1ˆ ˆ ˆ

1
ˆ̂

n
T

i i
i

n
T T

i i
i

V X X
n

X X
n

µ µ

µµ

=

=

= − −

= −

�

�

 

Missing Data: 

Assume that components of iX  are missing at 
random.  So the missing data pattern for each 
vector could be arbitrary. 

For example, 1Y  = 1X , 2Y  = ( )21 23 25 2, , ,
T

kX X X X�  

(with 2Z  = ( )22 24,
T

X X ) and so on. 

While each iY  is multivariate normal, the 
parameterization is potentially different for 
each observation, so you can’t directly get the 
MLE. 

However it can be done quite easily with EM 
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E-step: 

As the complete data log likelihood is a linear 
function of the sufficient statistics, the E-step 
involves calculating 

1

, ,
n

i n n
i

E X Y Vµ
=

� �
 �
� �
�  and 

1

, ,
n

T
i i n n

i

E X X Y Vµ
=

� �
 �
� �
�  

If the observations are independent, the 
problem reduces to calculating 

( )ˆ , ,n
i i i n nX E X Y Vµ� �= � � 

and 
( )ˆ , ,n T
i i i i n nS E X X Y Vµ� �= � � 

for each observation.  (How to do it to come) 

M-step: 

( )
1

1

1 ˆˆ
n

n
n i

i

X
n

µ +
=

= �  

and 

( )
1 1

1

1 ˆˆ ˆ ˆ
n

Tn
i n n

i

V S
n

µ µ+ +
=

= −�  
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How to get ( )n
iX  and ( )ˆn

iS  

iT
i i

i

Z
X P

Y
� �

=  �
� �

 

where T
iP  is a square matrix which permutes 

the rows into the correct order. ( 1T
i iP P −= ). 

For multivariate normals 

( )1
| ,i i z ZY Y i Y Z Y i

i i i

E Z Y V V Y

E Y Y Y

µ µ µ−� � = + − =� �

� � =� �

 

So 

( ) ,Z Y in T
i i

i

X P
Y

µ� �
=  �

� �
 

To get ( )ˆn
iS , we’ll use the fact that 

( )VarT T
X XE XX X µ µ� � = +� �  

First 

( )
( )

( )

1
,Var

Var 0

Cov , 0

i i Z ZY Y YZ Z Y i

i i

i i i

Z Y V V V V V

Y Y

Z Y Y

−= − =

=

=
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Then 

( ) ,
,

0
Var

0 0
Z Y iT

i i i i X Y i

V
X Y P P V

� �
= = �

� �
 

So 

( ) ( ) ( )
| ,

Tn n n
i X Y i i iS V X X= +  

As can be seen from this example, EM doesn’t 
just fill in missing parts of X with their 
expectation, i.e, 

( ) ( )log ,n nQ f E X Yθ θ θ θ� �≠ � �  

Instead, when calculating ( )nQ θ θ  you need to 
calculate expectations of functions of the 
sufficient statistics. 

When the distribution of X comes from the 
exponential family, the problem reduces 
calculating the conditional expectation of the 
sufficient statistics since 

( ) ( ) ( ) ( )

( ) ( ) ( )

,

,

T
n n

T
n

Q E h X Y

E h X Y

θ θ β θ γ θ θ

β θ θ γ θ

� �= +
� �

� �= +
� �
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up to an additive constant (which doesn’t affect 
the optimization. 

This exactly what was done in the multivariate 
normal example ( ( )T T

i i ih X X X X� �= � �� � ) 

So in addition, when choosing X, the complete 
data, you also need to think of situations where 
you can calculate the conditional expectations 
in addition to whether the likelihood is easy to 
optimize. 

 

Optimality properties of EM 

Theorem 

( ) ( )1n ng Y g Yθ θ+ ≥  

or equivalently 

( ) ( )1log logn ng Y g Yθ θ+ ≥  

Proof: 

For simplicity, lets assume that X can be 
decomposed into ( ),Y Z , the observed and 
missing parts.  The proofs go through without 
this assumption, but they aren’t quite as 
intuitive (technical note, in Sec 10.3.1). 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

,

log log log ,

log log log ,

f X g Y h Z Y

f X g Y h Z Y

g Y f X h Z Y

θ θ θ

θ θ θ

θ θ θ

=

= +

= −

 

by taking expectations of both sides of the third 
line with respect to Y and nθ , we get 

( ) ( ) ( )log n ng Y Q Hθ θ θ θ θ= −  

where 

( ) ( ) ( )
( )

log , ,

log , ,

n n

n

H h Z Y h Z Y dZ

E h Z Y Y

θ θ θ θ

θ θ

=

� �= � �

�
 

Then  

( ) ( )
( ) ( )

( ) ( )

1

1

1

log log

0

0
0

n n

n n n n

n n n n

g Y g Y

Q Q

H H

θ θ

θ θ θ θ

θ θ θ θ

+

+

+

−

� �= −� �

≥
� �− −� �

≤
≥

�����������

�������������

 

Thus ( ) ( )1log logn ng Y g Yθ θ+ ≥  
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Jensen’s inequality: 

Let W be a random variable.  If ( )h w  is a 
convex function on the range of W, then 

( ) [ ]( )E h W h E W� � ≥� �  

assuming both expectations exist.  For a 
strictly convex function, equality holds iff 

[ ]W E W=  almost surely. 

Lemma (Prop 10.3.2): 

 ( ) ( )'H Hθ θ θ θ≤  

Proof 

( ) ( )
( ) ( )

( )
( )
( ) ( )

( )
( ) ( )

( )

'

log , log , '

,

, '
log ,

,

, '
log ,

,

log , ' 0

H H

h Z Y h Z Y

h Z Y dZ

h Z Y
h Z Y dZ

h Z Y

h Z Y
h Z Y dZ

h Z Y

h Z Y dZ

θ θ θ θ

θ θ

θ

θ
θ

θ

θ
θ

θ

θ

−

� �= −� �

×

� �
= −  �

 �� �

� �
≥ −  �

 �� �

� �= − =� �

�

�

�

�  
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Generalized EM (GEM): 

In the M-step, you don’t actually have to 
maximize the Q function at each step. 

What is needed is to choose a value 1nθ +  such that 

( ) ( )1n n n nQ Qθ θ θ θ+ ≥ . 

Since this relationship was all that was used in 
the earlier proof, any GEM will increase the 
likelihood. 

So the assumption that X has to be easy to 
maximize can be relaxed and leads to extensions 
to EM, some of which are discussed in Chapter 12 
of Lange. 

Corollary to increasing likelihood theorem 

If the sequence ( ){ }ng Y θ  is bounded above then 

it will converge to some value *g . 

So this implies that EM (or a GEM) converges to 
something. 

It doesn’t imply that nθ  to an optima of ( )ng Y θ . 

You need a bit more to do that. 
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Note that the proof of this in Dempster, Laird and 
Rubin was in error.  Wu (1983) finds conditions 
which do imply what nθ  converges to. 

Theorem:  Under some regularity conditions (see 
Wu, 1983), for any EM sequence { }nθ , 

( ) ( )1log logn ng Y g Yθ θ+ >  

if 

( ){ }: log 0n D g Yθ θ θ∉ Γ = =  

Proof: 

( ) ( )10logD g Y D Qθ θ θ=  

where D10 indicates taking partial derivatives with 
respect to the first θ. 

This comes from 

( ) ( ) ( )log g Y Q Hθ θ θ θ θ= −  

and ( )10D H θ θ  = 0 since ( ) ( )'H Hθ θ θ θ≥  

So if ( ) ( )1n n n nQ Qθ θ θ θ+ > , then 

( ) ( )1log logn ng Y g Yθ θ+ >  

which holds for points in cΓ . 
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This theorem then implies that any limit point of 
an EM sequence must be a stationary point of 

( )log ng Y θ . 

Thus a sequence { }nθ  must converge to a local 

maximum or saddle point of ( )log ng Y θ . 

 


