
Solution of non-linear equations 

Finding MLEs, posterior modes (MAP 
estimates), minimizing loss functions, etc. 

In many cases, this problem reduces to solving 
a nonlinear equation as 

arg min f(x) or arg max f(x) usually satisfies 
f’(x) = 0. 

Usually easier to solve f’(x) = 0 than to deal 
with f(x) directly. 

There are lots of ways to do this.  Three 
popular approaches are bisection, functional 
iteration, and Newton-Raphson. 

Bisection (for 1 dimension problems) 

Have continuous function g(x) and two values 
a0 and b0 such that 

g(a0) > 0 and g(b0) < 0  (or vice versa) 
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We know that there exists at least one point, x* 
in (a0, b0) such that g(x*) = 0 by the 
intermediate value theorem. 

Idea: try midpoint of interval 
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If g(c)g(a0) > 0 set a1 = c, b1 = b0 and continue 

 {g(c) and g(a) are both > 0 or both < 0 so  
 must be a root between c and b} 

If g(c)g(a0) < 0 set a1 = a0, b1 = c and continue 

 {g(c) and g(a) are on opposite side so there  
 must be a root between a and c} 

If g(c) = 0 stop 

Continue until the interval width gets small 
enough. 
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After n steps, the interval width = bn – an  
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Set *x̂  = 
+
2

n na b
, the midpoint of the last 

interval as the estimate of the root x̂ . 

Since it’s the midpoint of the last interval, the 
maximum error satisfies 
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Example: Linkage Analysis (Rao, 1973, pp 268-
269) 

2 gene on a chromosome are separated by a 
recombination fraction θ (θ � ½). 

This organism can pass 4 
possible haplotypes to its 
offspring 

 
Haplotype Probability 

AB (1 – θ)/2 
Ab θ/2 
aB θ/2 
ab (1 – θ)/2 

A 

B 

a 

b 



An experiment was performed to estimate θ.  
The breeding experiment crossed AB|ab x 
AB|ab and recorded the observed phenotypes. 

In this experiment, 2 dominate traits were 
observed (A dominant to a, B dominate to b). 

While there are 16 possible joint haplotypes in 
the offspring (4 from father times 4 from 
mother), there are only 4 possible phenotypes 
 

Phenotype Probability Counts 

AB (3 – 2θ + θ2)/4 125 

Ab (2θ – θ2)/4 18 

aB (2θ – θ2)/4 20 

ab (1 – 2θ + θ2)/4 34 

Note that this problem is easier to solve with 
the transformation (Lange page 126, problem 7) 

λ θ θ θ= − + = −2 21 2 (1 )  

θ λ= −1  

Under this transformation, the probabilities are 

 



Phenotype Probability Counts 

AB (2 + λ)/4 125 

Ab (1 – λ)/4 18 

aB (1 – λ)/4 20 

ab λ/4 34 

The likelihood and log likelihood functions are 

λ λ λ λ+∝ + −125 18 20 34( ) (2 ) (1 )L  

λ λ λ λ= + + − +log ( ) 125 log(2 ) 38 log(1 ) 34 logL  

which gives the score function 
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The bisection algorithm for l(λ) with a0 = 0.5 
and b0 = 0.9 gives λ *̂=0.6268 after 20 steps.  
The convergence pattern can be seen with 
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Iterate λ l(λ) 
1.0000 0.7000 -31.7989 
2.0000 0.6000 9.7436 
3.0000 0.6500 -9.0939 
4.0000 0.6250 0.6857 
5.0000 0.6375 -4.1009 
6.0000 0.6312 -1.6835 
7.0000 0.6281 -0.4931 
8.0000 0.6266 0.0977 
9.0000 0.6273 -0.1973 
10.0000 0.6270 -0.0497 
11.0000 0.6268 0.0240 
12.0000 0.6269 -0.0128 
13.0000 0.6268 0.0056 
14.0000 0.6268 -0.0036 
15.0000 0.6268 0.0010 
16.0000 0.6268 -0.0013 
17.0000 0.6268 -0.0002 
18.0000 0.6268 0.0004 
19.0000 0.6268 0.0001 
20.0000 0.6268 -0.0000 



For this example, 

max error � 
−
21

0.9 0.5
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 = 1.9 x 10-7 

To get θ *̂, use θ λ= −1 , which gives  

θ *̂ = 1 – 0.6268  = 0.2083 

Note that the maximum error in with the 
estimate θ *̂ needs to be carefully thought 
about, since the transformation is non-linear. 

How many iterations for the bisection 
algorithm? 

Once a0 and b0 are determined its easy.  Base 
on a maximum desired error 
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For example, for M = 0.0001 
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so use at least 11 iterates. 

Advantages of the bisection method: 

• Must terminate 

• Guaranteed to find a zero of the function do 
desired accuracy 

Disadvantages: 

• Can only handle univariate problems 

• Linear convergence (Other algorithms, such 
as Newton-Raphson can be faster) 

• From optimization point of view, not 
guaranteed to find a optima. 

Note that this disadvantage is not really 
specific to bisection, but to using root finders 
on the derivative of the function to be 
optimized. 

Solving ='( ) 0f x  may give a minimum or a 
saddle point when a maximum is desired. 



Need to check ( )f x  or ''( )f x  to see if *x̂  is a 
local maximum (e.g. is *ˆ''( )f x  < 0 or is '( )f x  a 
decreasing function around *x̂ ) 

In this case, the log likelihood is definitely 
concave, so we have found the MLE 
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One thing to note with the bisection algorithm 
when used to optimize a likelihood function, 
the likelihood (or log likelihood) does not have 
to increase at each step, particularly for the 
early iterates.  However it will tend to do this 
once you are in the area of the optima, as can 
be seen in the following figure. 
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