
1 

For comparison, the true MLE can be 
calculated for the linkage example.  As seen 
last time 

l(λ) = 
λ+

125
2

 – 
λ−

38
1

 + 
λ
34

 = 0 

which is equivalent to solving 

 125(1 – λ)λ – 38(2 + λ)λ + 34(2 + λ)(1 – λ) = 0 

 = -197λ2 + 15λ + 68 

The two roots of this equation are 0.6268215 
and -0.5506794.  Only the first one is valid 
since λ must be in the range [0.25, 1]. 

There are other approaches similar to 
bisection.  One useful one is the method of 
False Position (Regula Falsi). 

A motivation behind this method is that the 
function is approximately linear in the region of 
interest. 
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Join points (ai, g(ai)) and (bi, g(bi)) with a 
straight line and find the point where the 
straight line intersects with the line y = 0 (call 
point pi. 
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If g(pi)g(ai) > 0 set ai+1 = pi and bi+1 = bi 

If g(pi)g(ai) < 0 set ai+1 = ai and bi+1 = pi 

For some problems, this approach can be faster 
than bisection, but it depends on the shape of 
the function and the starting endpoints. 

Also its harder to show convergence to the root 
since the interval size doesn’t have to go to zero 
like with bisection.  The can happen with a 
convex or concave function. 

a0 b0 

0 
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However, this routine will eventually converge 
to a root.  This can be shown since {ai} is an 
non-decreasing sequence bounded above and 
{bi} is an non-increasing sequence bounded 
below. 
 

 Bisection Regula Falsi 

Iterate Lower Upper Lower Upper 

0 0.5000 0.9000 0.5000 0.9000 

1 0.5000 0.7000 0.5492 0.9000 

2 0.6000 0.7000 0.5779 0.9000 

3 0.6000 0.6500 0.5955 0.9000 

4 0.6250 0.6500 0.6066 0.9000 

5 0.6250 0.6375 0.6137 0.9000 

6 0.6250 0.6312 0.6183 0.9000 

7 0.6250 0.6281 0.6212 0.9000 

8 0.6266 0.6281 0.6232 0.9000 

9 0.6266 0.6273 0.6244 0.9000 

10 0.6266 0.6270 0.6253 0.9000 

11 0.6268 0.6270 0.6258 0.9000 

12 0.6268 0.6269 0.6262 0.9000 

13 0.6268 0.6269 0.6264 0.9000 

14 0.6268 0.6268 0.6265 0.9000 

15 0.6268 0.6268 0.6266 0.9000 

16 0.6268 0.6268 0.6267 0.9000 

17 0.6268 0.6268 0.6267 0.9000 

18 0.6268 0.6268 0.6268 0.9000 

19 0.6268 0.6268 0.6268 0.9000 

20 0.6268 0.6268 0.6268 0.9000 
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Functional Iteration (Fixed Point Approaches) 

Instead of solving g(x) = 0, we can investigate 
the function 

f(x) = g(x) + x 

Solving g(x) = 0 is the same as solving f(x) = x. 

In many situations, iterates of the sequence  
xn = f(xn-1) converge to a root of g(x) starting 
from any point x0 nearby. 

But it doesn’t have to! 

Lets run this algorithm starting at x0 = 0.62 
and x0 = 0.63, which are both close to the true 
root of 0.6268215. 
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In both cases, the iterates seem to diverge, or 
at least don’t seem to converge in the right 
region. 

Lets look at the function f(x), in particular its 
derivative. 
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So small changes in x lead to large changes in 
f(x), even very close to the fixed point. 

So we need conditions on when fixed point 
methods can work 
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Proposition 5.3.1: Suppose f(x) defined on a 
closed interval I satisfies the conditions 

1) f(x) � I whenever x � I 

2) |f(y) – f(x)| � λ|y – x| for any two points x & 
y in I. 

Then provided the Lipschitz constant λ is in  
[0, 1), f(x) has a unique fixed point x� � I, and 
the functional iterates xn = f(xn-1) converge to x� 
regardless of the starting point x0 � I.  
Furthermore, we have the precise error 
estimate 

|xn – x∞| � 
λ

λ−1

n

|x1 – x0| 

(For proof, see Lange) 

 

So if f(x) (and g(x)) is nice enough, we can be 
guaranteed to find the desired root. 

Need to get a handle on the Lipschitz constant 
λ.  Usually you can use an upper bound on 
| '( )f x |. 
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What happened in the linkage example.  Well  
λ > 360.  So for an x near (but not equal to x∞) 

|f(x) – x∞| = | '( )f z  (x – x∞)| (Mean value 
theorem) 

       � 360 |x – x∞| � |x – x∞| 

So there was no way that this approach could 
work.  This situation is known as repulsive.  
You have to end up further from the fixed point 
than where you started. 

If | ∞'( )f x | < 1, the situation is known as 
attractive. 
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If | ∞'( )f x | = 1, the situation is indeterminant 
and investigation of the function is required. 

Example: Extinction Probabilities of Branching 
Processes (Section 5.3.2) 

Stochastic process that describes a model of 
population growth. 

Start with 1 particle.  This particle has k 
offspring with probability pk.  Each of these k 
particles generates offspring by the same 
mechanism.  And so on for these offspring. 

One question of interest is whether the 
population will completely die out. 

This question can be answered by investigating 
the generating function of the process 

P(s) = 
∞

=
�

0

k
k

k

p s  

If p0 = 0, the population can never die out, so 
we will only consider the case p0 > 0. 

It ends up that the probability that the 
population will eventually die out satisfies the 
fixed point equation 

s = P(s) 
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This equation can have 1 or 2 fixed points.  The 

point s = 1 must be one as 
∞

=
�

0
k

k

p = 1.  It can be 

two since P(0) > 0 (we’ll also ignore the case 
where p0 = 1) and P(s) is a convex function in 
[0,1] since 

P’’(s) = 
∞

−

=

−�
2

2

( 1) k
k

k

k k p s  > 0 

Since its convex, it will intersect a straight line 
at most twice.  However the second point of 
intersection may not be in [0,1] (if it exists).  
The function must look like one of the 
following. 
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Which occurs depends on P’(1), the mean 
number of offspring for each particle.  If  
P’(1) � 1, the first situation must happen.  The 
second situation will occur with If P’(1) > 1. 

Note that the extinction probability is the 
smaller fixed point when P’(1) > 1.  (s = 1 is a 
point of repulsion). 

When P’(1) > 1, we can find the fixed point by 
iterating starting at s0 = 0.  This works since  
0< P’(s) < 1 and P(s) � s for s � [0, s∞].  Usually 
it will be for s � [0, s∞ + δ], where δ > 0. 

Lets look at Lotka’s example examining the 
extinction of surnames among white male in 
the US based on 1920 census data. 

P(s) = 0.4982 + 0.2103s + 0.1270s2  
    + 0.7330s3 + 0.0418s4 + 0.0241s5  
    + 0.0132s6 + 0.0069s7 + 0.0035s8  

+ 0.0015s9 + 0.0005s10 
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The method converges slowly to the extinction 
probability of 0.879755. 

After 50 steps, we can show that 

Bound: |sn – s∞| � 
λ

λ−1

n

|s1 – s0| = 0.0039 

Actual: |sn – s∞| = 0.000105 
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Why is convergence slow? 

Error estimate bound  

|sn – s∞| � 
λ

λ−1

n

|s1 – s0| 
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So 

+ ∞

∞

−
−

1max| |
max| |

n

n

s s
s s

 = λ 

A reasonable Lipschitz constant for this 
problem is P’(s∞) = 0.8713. 

So each step is only bringing you about 13% 
closer to the truth. 

If we were to use the bisection method to solve 
this problem, based on g(s) = P(s) – s = 0. 

+ ∞

∞

−
−

1max| |
max| |

n

n

s s
s s

 = ½  

So each step is bringing us about half the way 
there. 

After 50 bisection steps (a0 = 0, b0 =1) 

|sn – s∞| � 51

1
2

 = 4.4409e-016 

Functional iteration methods such as these 
aren’t commonly used to directly find roots 
much in statistics from what I’ve seen, but 
other methods, such as Newton-Raphson to 
have a functional iteration property underlying 
them. 


