
1

For comparison, the true MLE can be
calculated for the linkage example. As seen
last time

l(λ) =
λ+

125
2

 –
λ−

38
1

 +
λ
34

 = 0

which is equivalent to solving

 125(1 – λ)λ – 38(2 + λ)λ + 34(2 + λ)(1 – λ) = 0

 = -197λ2 + 15λ + 68

The two roots of this equation are 0.6268215
and -0.5506794. Only the first one is valid
since λ must be in the range [0.25, 1].

There are other approaches similar to
bisection. One useful one is the method of
False Position (Regula Falsi).

A motivation behind this method is that the
function is approximately linear in the region of
interest.

2

Join points (ai, g(ai)) and (bi, g(bi)) with a
straight line and find the point where the
straight line intersects with the line y = 0 (call
point pi.

Line: l(x) =
−

+ −
−

1() ()
() ()i

i i
i i

g b g a
g a x a

b a

l(x) = 0 � pi =
−

−
−1

() ()
() ()
i i i

i
i

b a g a
a

g b g a

If g(pi)g(ai) > 0 set ai+1 = pi and bi+1 = bi

If g(pi)g(ai) < 0 set ai+1 = ai and bi+1 = pi

For some problems, this approach can be faster
than bisection, but it depends on the shape of
the function and the starting endpoints.

Also its harder to show convergence to the root
since the interval size doesn’t have to go to zero
like with bisection. The can happen with a
convex or concave function.

a0 b0

0

3

However, this routine will eventually converge
to a root. This can be shown since {ai} is an
non-decreasing sequence bounded above and
{bi} is an non-increasing sequence bounded
below.

 Bisection Regula Falsi

Iterate Lower Upper Lower Upper

0 0.5000 0.9000 0.5000 0.9000

1 0.5000 0.7000 0.5492 0.9000

2 0.6000 0.7000 0.5779 0.9000

3 0.6000 0.6500 0.5955 0.9000

4 0.6250 0.6500 0.6066 0.9000

5 0.6250 0.6375 0.6137 0.9000

6 0.6250 0.6312 0.6183 0.9000

7 0.6250 0.6281 0.6212 0.9000

8 0.6266 0.6281 0.6232 0.9000

9 0.6266 0.6273 0.6244 0.9000

10 0.6266 0.6270 0.6253 0.9000

11 0.6268 0.6270 0.6258 0.9000

12 0.6268 0.6269 0.6262 0.9000

13 0.6268 0.6269 0.6264 0.9000

14 0.6268 0.6268 0.6265 0.9000

15 0.6268 0.6268 0.6266 0.9000

16 0.6268 0.6268 0.6267 0.9000

17 0.6268 0.6268 0.6267 0.9000

18 0.6268 0.6268 0.6268 0.9000

19 0.6268 0.6268 0.6268 0.9000

20 0.6268 0.6268 0.6268 0.9000

4

0 2 4 6 8 10 12 14 16 18 20
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Iterate

R
oo

t
E

st
im

at
e

a0 = 0.5, b0 = 0.9

Bisection
Regula Falsi

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Iterate

|E
rr

or
|

a0 = 0.5 b0 = 0.9

Bisection
Regula Falsi

5

0 2 4 6 8 10 12 14 16 18 20
0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

Iterate

R
oo

t
E

st
im

at
e

a0 = 0.6, b0 = 0.75

Bisection
Regula Falsi

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iterate

|E
rr

or
|

a0 = 0.6 b0 = 0.75

Bisection
Regula Falsi

6

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
-300

-250

-200

-150

-100

-50

0

50

λ

l(λ
)

a0 = 0.5, b0 = 0.9

0.6 0.65 0.7

-60

-50

-40

-30

-20

-10

0

10

λ

l(λ
)

a0 = 0.6, b0 = 0.75

7

Functional Iteration (Fixed Point Approaches)

Instead of solving g(x) = 0, we can investigate
the function

f(x) = g(x) + x

Solving g(x) = 0 is the same as solving f(x) = x.

In many situations, iterates of the sequence
xn = f(xn-1) converge to a root of g(x) starting
from any point x0 nearby.

But it doesn’t have to!

Lets run this algorithm starting at x0 = 0.62
and x0 = 0.63, which are both close to the true
root of 0.6268215.

8

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Iterate

x n

x0 = 0.62

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

100

150

200

250

Iterate

x n

x0 = 0.63

9

In both cases, the iterates seem to diverge, or
at least don’t seem to converge in the right
region.

Lets look at the function f(x), in particular its
derivative.

0.62 0.622 0.624 0.626 0.628 0.63 0.632 0.634 0.636 0.638 0.64
-395

-390

-385

-380

-375

-370

-365

x

df
(x

)/
dx

Derivative of f(x)

So small changes in x lead to large changes in
f(x), even very close to the fixed point.

So we need conditions on when fixed point
methods can work

10

Proposition 5.3.1: Suppose f(x) defined on a
closed interval I satisfies the conditions

1) f(x) � I whenever x � I

2) |f(y) – f(x)| � λ|y – x| for any two points x &
y in I.

Then provided the Lipschitz constant λ is in
[0, 1), f(x) has a unique fixed point x� � I, and
the functional iterates xn = f(xn-1) converge to x�
regardless of the starting point x0 � I.
Furthermore, we have the precise error
estimate

|xn – x∞| �
λ

λ−1

n

|x1 – x0|

(For proof, see Lange)

So if f(x) (and g(x)) is nice enough, we can be
guaranteed to find the desired root.

Need to get a handle on the Lipschitz constant
λ. Usually you can use an upper bound on
| '()f x |.

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Example Lipschitz Function

x

f(
x)

What happened in the linkage example. Well
λ > 360. So for an x near (but not equal to x∞)

|f(x) – x∞| = | '()f z (x – x∞)| (Mean value
theorem)

 � 360 |x – x∞| � |x – x∞|

So there was no way that this approach could
work. This situation is known as repulsive.
You have to end up further from the fixed point
than where you started.

If | ∞'()f x | < 1, the situation is known as
attractive.

12

If | ∞'()f x | = 1, the situation is indeterminant
and investigation of the function is required.

Example: Extinction Probabilities of Branching
Processes (Section 5.3.2)

Stochastic process that describes a model of
population growth.

Start with 1 particle. This particle has k
offspring with probability pk. Each of these k
particles generates offspring by the same
mechanism. And so on for these offspring.

One question of interest is whether the
population will completely die out.

This question can be answered by investigating
the generating function of the process

P(s) =
∞

=
�

0

k
k

k

p s

If p0 = 0, the population can never die out, so
we will only consider the case p0 > 0.

It ends up that the probability that the
population will eventually die out satisfies the
fixed point equation

s = P(s)

13

This equation can have 1 or 2 fixed points. The

point s = 1 must be one as
∞

=
�

0
k

k

p = 1. It can be

two since P(0) > 0 (we’ll also ignore the case
where p0 = 1) and P(s) is a convex function in
[0,1] since

P’’(s) =
∞

−

=

−�
2

2

(1) k
k

k

k k p s > 0

Since its convex, it will intersect a straight line
at most twice. However the second point of
intersection may not be in [0,1] (if it exists).
The function must look like one of the
following.

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(s) = 1 / (2 - s); pk = 2-k-1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P(s) = 0.3 + 0.1s + 0.4s2 + 0.2s3

15

Which occurs depends on P’(1), the mean
number of offspring for each particle. If
P’(1) � 1, the first situation must happen. The
second situation will occur with If P’(1) > 1.

Note that the extinction probability is the
smaller fixed point when P’(1) > 1. (s = 1 is a
point of repulsion).

When P’(1) > 1, we can find the fixed point by
iterating starting at s0 = 0. This works since
0< P’(s) < 1 and P(s) � s for s � [0, s∞]. Usually
it will be for s � [0, s∞ + δ], where δ > 0.

Lets look at Lotka’s example examining the
extinction of surnames among white male in
the US based on 1920 census data.

P(s) = 0.4982 + 0.2103s + 0.1270s2
 + 0.7330s3 + 0.0418s4 + 0.0241s5
 + 0.0132s6 + 0.0069s7 + 0.0035s8

+ 0.0015s9 + 0.0005s10

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Lotka Generating Function

s

P
(s

)

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Lotka Generating Function

s

P
(s

)

17

The method converges slowly to the extinction
probability of 0.879755.

After 50 steps, we can show that

Bound: |sn – s∞| �
λ

λ−1

n

|s1 – s0| = 0.0039

Actual: |sn – s∞| = 0.000105

0 5 10 15 20 25 30 35 40 45 50
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Iteration

E
rr

or

Why is convergence slow?

Error estimate bound

|sn – s∞| �
λ

λ−1

n

|s1 – s0|

18

So

+ ∞

∞

−
−

1max| |
max| |

n

n

s s
s s

 = λ

A reasonable Lipschitz constant for this
problem is P’(s∞) = 0.8713.

So each step is only bringing you about 13%
closer to the truth.

If we were to use the bisection method to solve
this problem, based on g(s) = P(s) – s = 0.

+ ∞

∞

−
−

1max| |
max| |

n

n

s s
s s

 = ½

So each step is bringing us about half the way
there.

After 50 bisection steps (a0 = 0, b0 =1)

|sn – s∞| � 51

1
2

 = 4.4409e-016

Functional iteration methods such as these
aren’t commonly used to directly find roots
much in statistics from what I’ve seen, but
other methods, such as Newton-Raphson to
have a functional iteration property underlying
them.

