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Generating Random Deviates 

Often there are no direct ways of sampling from 
a desired distribution (e.g. inverse cdf or 
relationship with other distributions). 

So we need other approaches to generation for 
other distributions. 

 

Acceptance-Rejection (von Neumann, 1951) 

Want to simulate from a distribution with 
density ( )f x . 

Need to find a “dominating” or majorizing 
distribution ( )g x  where g is easy to sample 
from and 

( ) ( ) ( )f x cg x h x≤ =  

for all x and some constant c > 1. 
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Sampling scheme 

1) Sample x from ( )g x  and compute the ratio 

( ) ( )
( )

( )
( )

1
f x f x

r x
cg x h x

= = ≤  

2) Sample ( )~ 0,1u U  

 If u � ( )r x accept and return x 

 If u > ( )r x  reject and go back to 1) 

Note that step 2) is equivalent to flipping a 
biased coin with success probability r. 

The resultant sample is a draw from ( )f x . 

Proof: 

Let I be the indicator of whether a sample x is 
accepted.  Then 

[ ] ( )
( )
( ) ( )

1 1

1

P I P I X x g x dx

f x
g x dx

cg x c

� �= = = =� �

= =

�

�
 

Next, 
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( ) ( )
( ) ( ) [ ]

( ) ( )

1 1
f x

p x I g x P I
cg x

cf x
f x

c

= = =

= =

 

See Flury (1990) for a more geometrical proof. 

Its based on the idea of drawing uniform points 
( ),x y  under the curve ( )h x  and only accepting 
the points that also lie under the curve ( )f x . 
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The number of draws needed until an 
acceptance occurs is ( )Geometric 1 c  and thus 
the expected number of draws until a sample is 
accepted is c. 

The acceptance probability satisfies 

( )
( )

( )
( )

Area under 1
Area under 

f x dx f x

c h xcg x dx
= =�
�

 

One consequence of this is that c should be 
made as small as possible to minimize the 
number rejections. 

The optimal c is given by 

( )
( )

sup
f x

c
g x

=  

Note that the best c need not be determined, 
just one that satisfies  

( ) ( ) ( )f x cg x h x≤ =  

for all x. 
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Example: Generating from the half normal 
distribution. 

( ) ( ) ( )

( )
2

2 0

2
exp 0

2

f x x I x

x
I x

φ

π

= ≥

� �
= − ≥� 	


 �

 

Lets use an Exp(1) as the dominating density 

( ) ( )0xg x e I x−= ≥  
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exp 1 2 1.315489c

π
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Thus the acceptance –rejection scheme is 

1) Draw ( )~ Exp 1x  

( ) ( )( )2
exp 0.5 1r x x= − −  

2) Draw ( )~ 0,1u U  

 If u � ( )r x accept and return x 

 If u > ( )r x  reject and go back to 1) 

Note that this scheme isn’t needed for this 
example as the half normal distribution is the 
distribution of the absolute value of ( )0,1N  
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In the above is was assumed that ( )f x  was a 
density function.  In fact ( )f x  only needs to be 
known up to a multiplicative constant 

( ) ( )l x bf x=  

where b may be unknown. 

One place where this is useful is with posterior 
distributions as 

( ) ( ) ( )p x y x f y xπ∝  

The normalizing constant may be difficult to 
determine exactly. 

However it is not necessary to do so.  Modify 
the procedure as follows. 

Find c such that  

( ) ( ) ( )l x cg x h x≤ =  

for all x and some constant c > 1. 

Sampling scheme 

1) Sample x from ( )g x  and compute the ratio 

( ) ( )
( )

( )
( )

1
l x l x

r x
cg x h x

= = ≤  
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2) Sample ( )~ 0,1u U  

 If u � ( )r x accept and return x 

 If u > ( )r x  reject and go back to 1) 

Do everything the same except use ( )l x  instead 
of ( )f x  

The acceptance probability for this scheme is 

b c . 

 

In addition to the constant c chosen, the 
distribution ( )g x  will also affect the acceptance 
rate.  (c is chosen conditional on ( )g x ) 

A good choice ( )g x  will normally be “close to” 

( )f x .  You want to minimize the separation 
between the two densities. 

Often will look for much member of a 
parametric family will minimize c. 
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For example, for the Half normal problem, 
which ( )Exp µ , will minimize ( )c µ . 
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In fact 1µ =  will minimize ( )c µ  for this 
problem. 

 

Note that so far I’m been appeared to have been 
focusing on continuous random variables. 

In fact acceptance-rejection works fine with 
discrete random variables and with variables 
over more than one dimension. 
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The proof goes through in this more general 
place by replacing integration over a density to 
integration over a more general measure. 

For discrete random variables, you get a sum 
over the probability mass function. 

With higher dimensional problems, the 
majorization constants tend to be higher, 
implying the procedure is less efficient. 

 

Log-concave densities 

There is a class of densities where it is easy to 
set up an acceptance-rejection scheme. 

It the case when the log of the density is 
concave on the support of the distributions 

If ( )f x  is log concave, any tangent line to 

( )log f x  will lie above ( )log f x  (call it 

( )l x a bx= + ). 

Thus ( ) ( )l x a bxh x e e e= =  lies above ( )f x . 

( )h x  looks like a scaled exponential density. 
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This suggests that exponential distributions 
can be used as the majorizing distributions. 

A strictly log concave density is unimodal. 

The mode may occur at either endpoint or in 
the middle. 

If the mode occurs at an endpoint, a single 
exponential can be used (as with the half 
normal example) 

If the mode occurs in the middle of the range, 
two exponential envelopes are needed (one for 
left of the mode, the other for the right of the 
mode) 

Example: ( )Gamma 2, 1k λ= =  

The mode for a Gamma is ( )1k λ−  (so 1 for this 
example) 

Left side: ( ) ( )( ) ( )1
exp 1 1l l

l

g x x I xµ
µ

= − <  

Right side: ( ) ( )( ) ( )1
exp 1 1r r

r

g x x I xµ
µ

= − − ≥  
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The choice of lµ  and rµ  depend on where you 
want the majorized densities ( )lg x  and ( )rg x  
to be tangent to ( )f x  

In the above the tangent points are 0.5lx =  and 
2rx = . 

The total area under ( ) ( ) ( )l l r rh x c g x c g x= +  is 

l rc c c= +  

For the example, 0.5lc =  and 0.8925206rc = , 
so the rejection rate for this sampler is just 
under 30%. 
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To determine which exponentials to use, 
involves solving the systems (for given lx  and 

rx ) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )' ' ' '

l l l l r r r r

l l l l r r r r

f x c g x f x c g x
f x c g x f x c g x

= =
= =

 

Solving gives 

( )
( )
( )
( )

( )

( )
( )
( )
( )

( )
2 2

' '

' '
l l r r

l r
l r

l r

x m x ml r
l r

l r

f x f x

f x f x

f x f x
c e c e

f x f x
λ λ

λ λ

− − −

= = −

= = −

 

where 1i iλ µ=  

The optimal choices for lx  and rx  can be found 
by minimizing lc  and rc  separately. 
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Discrete log concave distributions 

Random variable defined on non-negative 
integers 

Log concave defined as 

( ) ( ) ( )1
log log 1 log 1

2
f x f x f x� �≥ − + +� � 

which is equivalent to 

( ) ( ) ( )2
1 1f x f x f x≥ − +  

for all integers x. 

A possible majorizing distribution in the 
discrete case is the geometric distribution 

[ ] ( )1 ; 0,1,2,
x

P X x p p x= = − = � 

See Lange for choices of , , ,l r l rp p x x  
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Ratio Method 

This is another method that is useful when the 
distribution you are interested in ( )f x , is only 
known up to an unknown constant, 

( ) ( )h x cf x=  

Define 

( ) ( ){ }, : 0hS u v u h v u= < ≤  

If this set is bounded, we can draw uniform 
points from this set to generate X. 

Proposition 20.5.1 

Suppose  

( )supu xk h x=  

and 

( )supv xk x h x=  

are both finite.  Then the rectangle 
[ ] [ ]0, ,u v vk k k× −  encloses hS . 

If ( ) 0h x =  for x < 0, then the rectangle 

[ ] [ ]0, 0,u vk k×  encloses hS . 
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If the point ( ),U V  sampled uniformly from the 
enclosing set falls with in hS , then the ratio 
X V U=  is distributed according to ( )f x . 

Example: Standard normal 

( )

( )

2

2

1
exp

2

1
exp

4

h x x

h x x

� �= −� 	

 �

� �= −� 	

 �

 

( )
( )

0 1

2 exp 0.5

u

v

k h

k

= =

= −
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Generate 

( )
( ) ( )( )

~ 0,1

~ 2 exp 0.5 , 2 exp 0.5

U U

V U − − −
 

Accept X V U=  if 

( )2 2exp 0.25U V U≤ −  

The acceptance rate for this procedure is about 
62.6% 

 


