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Independent Monte Carlo 

Interested in  

( ) ( ) ( ) fE f X f x d xν µ� � = =� � �  

Approximate fµ  with 

( )
1

1 n

i
i

f f x
n =

= �  

where 1, , nx x�  is sampled from the probability 
measure ( )Xν . 

Under certain regularity conditions, 

( ) ( )
1

1 n

i
i

f x E f X
n =

� �→ � ��  

If 1, , nx x�  are an iid sample from ( )Xν , then 

( ) ( )
1

1 n

i
i

f x E f X
n =

� �→ � ��  

converges by the law of large numbers, 
assuming that ( )E f X� � < ∞� � . 
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In addition, if  

( ) ( ) ( )2 2
E f X f x d xν� � = < ∞
� � �  

then by the CLT 

( )
1

1 n

i
i

f x
n =
�  

is approximately normally distributed, with 
mean ( )E f X� �� � and variance ( )( )Var f X n . 

The usual estimate of ( )( )2 Varf f Xσ =  is 

( )( )
2

2

1

1
1

n

f i
i

s f x f
n =

= −
− � , 

the usual unbiased estimate of ( )( )Var f X . 

 

Example: Confidence interval properties 

Want to look at properties of the normal theory 
95% CI for µ 
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s
x t

m
±  
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1) Coverage probability (assuming µ = 0) 
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2) Mean interval width 
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when m = 10 for the following distributions 

1) ( )0,1N  

2) ( )Cauchy 0,1  

3) 3t  

4) ( )1,1U −  
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For the ( )0,1N , it is known that the true 
coverage rate is 95% and the mean interval 
width is  

( )
( ) ( )0.025

222
1 12

m
t

m m m

Γ

− −Γ
 

For m = 10, the mean width is 1.391597. 

Also for the ( )Cauchy 0,1 , the mean interval 
width is ∞. 

In the other cases, determining the exact 
values is difficult since the distributions of x  
and s are not tractable. 

In each case, m = 1000 imputations will be 
generated 

Estimates: 

1) Coverage probability 
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2) Mean interval width 
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Coverage Rate: 
 

Distribution Ĉ  ĈSE  

( )0,1N  0.954 0.0066245 

( )Cauchy 0,1  0.981 0.0043173 

3t  0.958 0.0063432 

( )1,1U −  0.967 0.0056490 

where 

( )
ˆ

ˆ ˆ1
C

C C
SE

n

−
=  
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Mean Interval Width: 
 

Distribution w  wSE  

( )0,1N  1.372 0.010122 

( )Cauchy 0,1  34.339 9.631 

3t  2.149 0.032455 

( )1,1U −  0.824 0.004204 

 

The estimation errors for the ( )0,1N  cases are 

Coverage: 0.004 

Mean width: 0.0193 

both of which are within 2 SE’s. 

 

Cauchy example: 

The assumption that ( )E f X� � < ∞� �  is 

important.  Since the Cauchy has no finite 
moments, [ ]E s = ∞, and thus the mean interval 
width is ∞.  Thus the reported sample average 
and standard error is not meaningful. 
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However even though the mean width is not 
defined, the coverage rate is well defined.  For 
every dataset, the indicator function is well 
defined and the integral of any indicator 
function of probable interest is finite. 

 

Sample size: 

When designing a Monte Carlo study, the 
sample size m needs to be determined. 

Usual approach is by bounding the SE. 

Want 

fSE
n

σ
≤  

which gives 
2

2

fn
SE

σ
≥  

where SE is the desired standard error and 
( )( )2 Varf f Xσ = . 
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There is the same problem here as with 
determining the sample size necessary to 
bound the size of a confidence interval: What is 

2
fσ ? 

Sometimes you can guess on what 2
fσ  might be. 

For example, in the coverage rate case 

( )2 1f C Cσ = −  

Since for the examples, C will be around 0.95, 
use that to pick n. 

It can be tougher for other problems.  For the 
width example, the question comes down to 
determining ( )Var is .  While this could be done 
for the normal (and the Cauchy), it is tougher 
for the other distributions. 

One approach is to do a small test sample to 
get a guess of 2

fσ  and use this to figure out how 
many more samples need to be added. 
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Single sample – Multiple questions 

In the example, a single sample was used to 
answer both questions (i.e. ix  and is  are the 
same in averages).  I could have used these 
same samples to answer many more questions 
(e.g. ( )Var w , E x� �� �, 

2 4.2E s mx� �+
� �

, etc) 

When dealing with multiple quantities to be 
studied, you need to pick a sample size that 
meets the requirements for all quantities (at 
least the important ones). 

 

Implementation in S-Plus/R & Matlab 

When possible use vectorized calculations, not 
loops, particularly with S-Plus. 
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Vectorized Loop 
rnorm.vec <- function(n, mu=0, 
sigma=1) { 
 
 
 
 
 
 
ndat<-matrix(rnorm(10*n, mu, 
sigma), ncol=10) 
xbar <- apply(ndat, 1, mean) 
s <- sqrt(apply(ndat, 1, var)) 
 
cover <- abs(xbar) * sqrt(10) / 
s <= qt(0.975, 9) 
width <- 2 * qt(0.975, 9) * s / 
sqrt(10) 
 
 
 
C <- mean(cover) 
wbar <- mean(width) 
 
list(cover=cover, C=C, 
width=width, wbar=wbar) } 

rnorm.loop <- function(n, mu=0, 
sigma=1) { 
 
xbar<-rep(0,n) 
s <- rep(0,n) 
cover <- rep(0,n) 
width <- rep(0,n) 
 
for(i in 1:n) { 
 
  x <- rnorm(10, mu, sigma) 
  xbar[i] <- mean(x) 
  s[i] <- sqrt(var(x)) 
 
  cover[i] <- abs(xbar[i]) * 
sqrt(10) / s[i] <= qt(0.975, 9) 
  width <- 2 * qt(0.975, 9) * 
s[i] / sqrt(10) 
} 
 
C <- mean(cover) 
wbar <- mean(width) 
 
list(cover=cover, C=C, 
width=width, wbar=wbar) } 

 

Run times when n = 10,000 

 R S-Plus 

Vectorized 1.5 sec 35 sec 

Loop 2.5 sec 48 sec 

Loop/Vector 1.67 1.37 
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Tests done on 1.6GHz Pentium 4 running 
Windows XP 

R version: 1.8.1 

S-Plus version: 6.0 Release 2 

General consensus about S-Plus would have 
suggested that the loop/vector ratio should 
have been higher with S-Plus than with R. 

While I’m not sure how to quantify it with this 
setup, the memory use for loops is usually 
worse than for vectorized setups, particularly 
with S-Plus. 

In Matlab, looping isn’t as bad, though if a 
procedure can be done with vectorized 
calculations its, usually preferable. 

 

Getting more precise estimates 

1) increase n 

2) different sampling scheme 
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Stratified Sampling 

Break the sample space S into disjoint regions 
1, , KS S�  

Sample points 1, ,
kk knx x�  in region k 

Within each region get sample average 

( )
1

1 kn

k ki
ik

f f x
n =

= �  

Then estimate fµ  by 

[ ]
1

ˆ
K

f k k
k

P S fµ
=

=�  

This estimator is based on the idea 

( ) ( ) kE f X E E f X S� �� � � �=� � � �� � 

The variance of this estimator is 

( ) [ ]( ) ( )( )2

1

Var
Var ˆ

K
k

f k
k k

f X X S
P S

n
µ

=

∈
=�  

If the regions are picked reasonably, this will 
have a smaller variance than  
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( )( )Var f X

n
 

If [ ]k kn nP S=  (proportional sampling), the 
variance of the stratified estimator reduces to 

( ) [ ] ( )( )

( )( )
1

1
Var ˆ Var

1
Var

K

f k k
k

P S f X X S
n

E f X Z
n

µ
=

= ∈

� �= � �

�
 

where Z is a random variable satisfying Z = k 
when the single random point drawn falls in 

kS . 

Since 

( )( ) ( )( )
( )( )( )

Var Var

Var

f X E f X Z

E f X Z

� �= � �

+
 

The stratified estimator has a smaller variance 
that the sample average estimator. 

Nonproportional sampling can give even more 
efficiency 

The optimal sample size choices, subject to 
kn n=�  is 
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[ ] ( )( )
( )( )

1

Var

Var

k k

k K

j j
j

P S f X X S
n n

P S f X X S
=

∈
=

� � ∈� ��
 

This implies that regions with high variability 
should get more samples than regions of small 
variability. 

 

Antithetic Variates 

Combines 2 correlated estimators to achieve a 
more precise estimator. 

Based on the idea 

( ) ( )

( )

1 1
Var Var Var

2 4 4
1

Cov ,
2

V W
V W

V W

+� �= +� �
 �

+
 

If V and W are negatively correlated, then you 
get a more precise estimate than if they were 
uncorrelated (or positively correlated). 

So we need to generate coupled, negatively 
correlated random variables. 
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The following proposition gives us an approach 
for doing this 

Proposition 21.4.1.  Suppose X is a random 
variable and the functions ( )f x  and ( )g x  are 
both increasing or both decreasing.  If the 
random variables ( )f X  and ( )g X  have finite 
second moments, then 

( ) ( )( )Cov , 0f X g X ≥  

If ( )f x  is increasing and ( )g x  is decreasing (or 
vice-versa), then the covariance � 0. 

Proof (See Lange, page 291) 

 

Suppose we wish to calculate 

( ) ( )f x g x dx�  

where ( )f x  is an increasing function and the 
density ( )g x  has CDF ( )G x .  Then the function 

( )( )1f G u−  is increasing and the function 

( )( )1 1f G u− −  is decreasing when [ ]0,1u ∈ . 

If 1, , nU U�  is and iid sample from ( )0,1U , then 
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( )( ) ( )( )
( ) ( )

1 1 1E f G U E f G U

f x g x dx

− −� � � �= −� � � �

= �  

and ( )( )1f G U−  and ( )( )1 1f G U− −  are negatively 

correlated. 

Thus the estimator  

( )( ) ( )( ){ }1 1

1

1
1

2

n

i i
i

f G U f G U
n

− −

=

+ −�  

has a smaller variance than  

( )( )
2

1

1

1
2

n

i
i

f G U
n

−

=
�  

The idea behind this estimator is that if 
1, , nU U�  are uniform, so are 11 , ,1 nU U− −� .  

Then this implies that ( ) ( )1 1
1 , , nG U G U− −
�  and 

( ) ( )1 1
11 , , 1 nG U G U− −− −�  are both sets of draws 

from ~X G . 

What this estimator is doing is making sure 
that if the pth quantile is in the sample of X, so 
is the 1 – pth quantile. 

In a sense, its giving a more balance sampled. 
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Note that this also works if ( )f x  is a 
decreasing function. 

Example: 

Let ( )~ 2X Exp  and we want to find 

( )

20.5

2 1.5 1.253314

xE X xe dx−� � =� �

= Γ =

�  

Generate n = 1000 values from ( )2Exp  and use 
Antithetic variates 
 

Sampler Estimate SE 

U sample 1.239673 0.0199 

1 – U sample 1.258362 0.0205 

Antithetic 1.249017 0.0032 

The error with antithetic estimate is -0.0043. 

If a single sample of n = 2000 was taken, the 
standard error would be approximately 0.0143. 

The gain in efficiency due to antithetic variates 
is approximately 20.25 (the square of the ratio 
of the standard errors). 
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To get the same efficiency out of a single 
sample, almost 40,000 samples would be 
needed. 


