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Antithetic Variates 

Generate: ( )1, , ~ 0,1nu u U�  

Let ( ) ( )1 * 1, 1i i i ix G u x G u− −= = −  
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Example: 

Let ( )~ 2X Exp  and we want to find 

( )

20.5

2 1.5 1.253314

xE X xe dx−� 	=
 �

= Γ =

�  

Generate n = 1000 values from ( )2Exp  and use 
Antithetic variates 
 

Sampler Estimate SE 

U sample 1.239673 0.0199 

1 – U sample 1.258362 0.0205 

Antithetic 1.249017 0.0032 
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The error with antithetic estimate is -0.0043. 

If a single sample of n = 2000 was taken, the 
standard error would be approximately 0.0143. 

The gain in efficiency due to antithetic variates 
is approximately 20.25 (the square of the ratio 
of the standard errors). 

To get the same efficiency out of a single 
sample, almost 40,000 samples would be 
needed. 

 

Antithetic variate generation 

If ix  is contained in the sample, then the 
corresponding sample that needs to be added is 

( )( )* 1 1i ix G G x−= −  

This approach is reasonable when ( )G x  and 

( )1G x−  are nice functions. 

In fact you only need ( )1G x−  to be nice as you 
can use the procedure described at the start of 
the class based on the uniform distribution to 
generate the samples needed. 
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Symmetric distributions 

If ~X G  has a symmetric distribution around a 
mean µ (e.g. Normal, Logistic, etc), the 
antithetic variates approach is easy since 

* 2i ix xµ= −  

This idea can also be expanded if ( )h X  is 
symmetric for some monotonic function h. 

For example if X is lognormal, then log X  is a 
symmetric random with mean µ.  Then the 
antithetic variate is 

2
*
i

i

e
x

x

µ

=  

In general the antithetic variate satisfies 

( )( )* 1 2i ix h h xµ−= −  

when there is a symmetrizing function ( )h x . 
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Note for the lognormal example, I wouldn’t 
implement it in this fashion.  Instead I would 
generate ( )1, , ~ 0,1nz z N�  and set 

*,i iz z
i ix e x eµ σ µ σ+ −= =  

since most lognormal generators start with 
normal random variables in the first place. 

 

Control Variates 

Similar to antithetic variates where you want to 
use correlation to reduce variability 

The underlying idea is to look at  

( ) ( ) ( ) ( )E f X E f X g X E g X� 	 � 	 � 	= − +
 � 
 � 
 � 

where ( )E g X� 	
 � is known analytically and the 

random variables ( )f X  and ( )g X  are positively 
correlated. 

( ) ( )( )
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f X g X

f X f X g X g X
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If ( )f X  and ( )g X  are highly enough 
correlated, this will have a smaller variance 
than ( )( )Var f X . 

This implies that the estimate of ( )E f X� 	
 � 

( ) ( ),
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will have a smaller variance than 

( )
1
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n
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i

f x
n

µ
=

= �  

This approach has ties to regression. 

Let ( )g E g Xµ � 	= 
 �.  Then the original 
formulation can be though of as looking at 

( ) ( )( )gf X g X µ− −  

Instead of this, lets look at 

( ) ( ) ( )( )b gf X f X b g X µ= − −  

For all b, ( ) ( )bE f X E f X� 	 � 	=
 � 
 �. 
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Thus the original problem can be modified by 
choosing the b to minimize ( )( )Var bf X , which 
can be done with 

( ) ( )( )
( )( )

Cov ,

Var
f

g

f X g X
b

g X

σ
ρ

σ
= =  

The idea behind this method is that by using 
the control variate ( )g X , we can see how likely 

the estimate of ( )E f X� 	
 � just based on the 

sampled ( ) ( )1 , , nf x f x�  is off. 

With this adjustment, the estimate of ( )E f X� 	
 � 
is 
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The variance of this estimator is 

( ) ( )2 2 2
, ,

1
Var ˆ 2f C b f fg gb b

n
µ σ σ σ= − +  

The various variance and covariance terms can 
be estimated using the standard unbiased 
estimators. 
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Example: 

Let ( )~ 2X Exp  and we want to find 

( )

20.5

2 1.5 1.253314

xE X xe dx−� 	 =
 �

= Γ =

�  

 

Let 

( )f x x= ; ( )g x x=  

We know that [ ] 2E X =  and it can be shown 
that 

( ) ( ) ( )( )1.5Cov , 2 2.5 1.5

1.253314

X X = Γ − Γ

=
 

This gives the optimum b of 

0.3133285b =  

(Note in most problems we can’t figure this 
covariance out exactly) 
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Generate n = 1000 values from ( )2Exp  and use 
optimum b for ( )g x x= .  For the simulated 
data we get. 

1

1
1.256252

n

i
i

x
n =

=�  

1

1
2.01843

n

i
i

x
n =

=�  

 

Sampler Estimate SE 

Crude MC 1.256252 0.020993 

Control 1.250476 0.006026 

 

In this example, the control variates approach 
is almost 12 times more efficient that the 
standard approach. 

We can also look the efficiency with other 
choices of b. 
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Note that you usually don’t know the optimum 
b since getting ( ) ( )( )Cov ,f X g X  is usually 
intractable analytically.  However you can use 
your sample to estimate it (and ( )( )Var g X  if 
necessary). 

 

Another equivalent approach (assuming that 
you estimate ( )( )Var g X ) is to run the linear 

regression of ( )f X  on ( )g X  (i.e. fit model 

( ) ( )f X a bg X ε= + +  

with the observed ( ){ }if x  and ( ){ }ig x ). 

Note that estimating the optimal b will 
introduce a slight bias in the estimate of 

( )E f X� 	
 � and a slightly overoptimistic SE. 

However these problems usually aren’t enough 
to worry about and asymptotically it gives the 
correct answer. 
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Rao-Blackwellization 

The control variate approach used the idea to 
try to do some analytic computations to 
improve our estimator. 

This next approach is based on the same idea, 
but focuses more on the function of interest 

Suppose that X can be decomposed into two 
parts ( ) ( )( )1 2,X X  and that we are interested in 

estimating ( ) ( ) ( )( )1 2,E f X E f X X� 	� 	 =
 � 
 �
. 

One approach is to sample pairs ( ) ( )( )1 2,X X . 

This can be done by  

 Sample ( )2X  from ( )( )2g X  

 Sample ( )1X  from ( ) ( )( )1 2g X X  

Then estimate ( )E f X� 	
 � by 

( ) ( )( )1 2
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Suppose however that ( ) ( )2
2E f X X x� 	=


 �
 can 

be calculated analytically.  Then the 
expectation can be estimated by 

( ) ( ) ( )2 2
,

1

1
ˆ

n

f RB i
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E f X X x
n

µ
=

� 	= =

 ��  

Both of these estimators are unbiased. 

However 
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This is based on 

( )( ) ( ) ( )( )
( ) ( )( )
2

2

Var Var
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E f X X

� 	= � �
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This estimator suggests that wherever possible, 
do exact calculation over simulation. 

 



13 

Rao-Blackwellized estimators can be used in a 
wide range of settings, including importance 
sampling, SIS, or MCMC. 

 

Importance Sampling 

Used for a number of purposes: 

• Variance reduction 

• Allows for difficult distributions to be 
sampled from. 

• Sensitivity analysis 

• Reusing samples to reduce computational 
burden. 

 

Idea is to sample from a different distribution 
that picks points in “important” regions of the 
sample space. 

Want  

( ) ( ) ( )E f X f x g x dx� 	 =
 � �  
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Instead of sampling from density (or probability 
mass function) ( )g x , sample from a 
distribution with density (or pmf) ( )h x . 

Since we are sampling from the “wrong” 
distribution we have to make adjustments in 
our estimator. 

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

g

h

E f X f x g x dx

g x
f x h x dx

h x

g X
E f X

h X

� 	 =
 �

=

� 	
= � �


 �

�

�  

This suggests the following estimation scheme 

1) Sample 1, , nx x�  from ( )h x . 

2) Calculate weights 

( )
( )

i
i

i

g x
w

h x
=  

3) Use estimator 

( ),
1

1
ˆ

n

f IS i i
i

w f x
n

µ
=

= �  
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So instead of a regular average, this estimator 
is a weighted average. 

So points that occur more often under ( )h x  
than ( )g x  get downweighted and those that 
occur less often get upweighted. 

 

Notice that ,f̂ ISµ  is an unbiased estimate of 

( )gE f X� 	
 � regardless of which proposal 

distribution ( )h x  as long as ( )h x  has the same 
support as ( )g x , i.e. 

( ) 0g x >  implies that ( ) 0h x >  

Note that ( ) 0h x >  can be allowed to occur 
when ( ) 0g x = , though doing this tends to be 
inefficient (but there are times you want to do 
this). 
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Since ,f̂ ISµ  is unbiased, the main idea is to pick 
a distribution ( )h x  that reduces the variance. 

( ) ( )
( )

( ) ( )
( )

2

2Varh h f

f X g X f X g X
E

h X h X
µ

� 	 �  �
� �= −� � � �� � � �� �� � � �
 �

 

To do this, we want ( )h x  to look like 

( ) ( )f x g x , i.e. make  

( ) ( )
( )

f x g x

h x
 

look like a constant. 

The optimal ( )h x  satisfies 

( ) ( ) ( )
( ) ( )

f x g x
h x

f x g x dx
=
�

 

Note that this usually can’t be determined, due 
to the normalizing constant. 

However this does give us a motivation for 
picking ( )h x . 
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Example: Monte Carlo Evaluation of a 
Likelihood Ratio (Genetics Example) 

Assume that you have a missing data model 
where ( ),obs misX X X= .  Then the observed data 
likelihood ratio satistifies 

( ) ( )
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This can be estimated by sampling 1, , nz z�  
from ( )mis obsp X X  calculating 

1) ( ) ( )
( )

1
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,

,
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i
obs i

p X z
f z

p X z
θ

θ

=  

2) ( ) ( )1 0
1

1ˆ ,
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i
i

l f z
n

θ θ
=

= �  

Suppose that you are interested in getting 
( )2 0,l θ θ , based on this Monte Carlo estimate. 
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This can be done with the importance sampling 
estimate 

( ) ( ) ( )
( )

2

1

2 0
1

,1ˆ ,
,

n
obs i

i
i obs i

p X z
l f z

n p X z
θ

θ

θ θ
=

= �  

This can be shown to be an unbiased estimator 
of ( )2 0,l θ θ . 

 

Genetics example: 

Observed Data Model 

( )1 2 3 4

1 1 2
, , , ~ Multi 197, , , ,

4 4 4 4
Y Y Y Y

λ λ λ λ �− − + �
� �� �
� �� �

 

( )
1 2 3 41 2

4 4 4

Y Y Y Y

g Y
λ λ λλ

+− + �  �  �= � � � � � �
� � � � � �

 

 

Complete Data Model 

( )1 2 3 4 5, , , ,

1 1 1
~ Multi 197, , , , ,

4 4 4 4 2

X X X X X

λ λ λ λ �− − �
� �� �
� �� �
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( )
1 4 2 3 51 1

4 4 2

X X X X X

g X
λ λλ

+ +− �  �  �= � � � � � �
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As seen before 4 4 4~ Bin ,
2

X Y Y
λ

λ
 �
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The complete data likelihood ratio satisfies 
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0 00
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Note that this implies the importance sample 
weight satisfies 

( ) 2
1 2 3 2 1

1

, , , ,
iz

iw c Y Y Y
θθ θ
θ
 �

= � �
� �

 

In this case ( )2 0
ˆ ,l λ λ  has the form 

( ) ( ) ( )1 2 3 2 1 2
2 0

1 1
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