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EM Algorithm Extensions 

ECM (Meng and Rubin, 1993) 

(Expectation Conditional Maximization) 

Idea: Suppose that ( )1 2, , , kθ θ θ θ= �  and that 

optimizing ( )( )nQ θ θ  isn’t easy.  However 

suppose that 
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are all easy to maximize. 

Note in the above jθ  may be a vector of 
parameters. 

Then the basic ECM algorithm modifies the M-
step as follows 
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M1: Given ( )
2 2

nθ θ= , ( )
3 3

nθ θ= , … , ( )n
k kθ θ=  find the 

value of 1θ , ( )1
1

nθ + , that maximizes 
( ) ( ) ( ) ( )( )1 2 3, , , ,n n n n

kQ θ θ θ θ θ�  

M2: Given ( )1
1 1

nθ θ += , ( )
3 3

nθ θ= , … , ( )n
k kθ θ=  find 

the value of 2θ , ( )1
2
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�  
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Mk: Given ( )1
1 1

nθ θ += , ( )1
2 2

nθ θ += , … , ( )1
1 1

n
k kθ θ +

− −=  

find the value of kθ , ( )1n
kθ + , that maximizes 

( ) ( ) ( ) ( )( )1 1 1
1 2 1, , , ,n n n n

k kQ θ θ θ θ θ+ + +
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So step through and maximize each piece 
separately. 
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This procedure is a GEM since  
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So all the nice properties I talked about last 
time go through, (though you need to be 
slightly careful with the regularity conditions 
showing that ECM converges to a stationary 
point of the likelihood surface – see Meng and 
Rubin 1983) 

Example: Multivariate normal regression with 
incomplete response data 

Complete Data Model: 

( )~ , ; 1, ,i iY N X V i mβ = �  

where iX  is a k × p matrix of covariates, β is a p 
× 1 vector of unknown parameters, and V is a 
positive definite covariance matrix ( ( )1 /2k k +  
unknown parameters) 
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Missing Data: 

Components of iY  are missing at random 
(similar to example from last time) 

Let iS  be a matrix on ones and zeros which 
indicates which observations have been 
observed (e.g. i iS Y  is the vector of observed 
components) 

E-step: 

( )ˆ , ,n
i i i i n nY E Y S Y Vβ� �= � � 

and 

( )ˆ , ,n T
i i i i i n nW E YY S Y Vβ� �= � � 

 

M-step: maximize 
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M1: 

( ) ( ) ( ) ( )1 11 ˆ
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M2: 
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Analogies with other procedures: 

Iterative Proportional Fitting (IPF): 

Approach for fitting log linear models for 
contingency tables when there are no 
closed form solutions.  Actually this is a 
special case of ECM (Lange, section 12.2). 

Gibbs sampler: 

Draw jθ  from j jθ −� �Θ� � where { }:j i i jθ−Θ = ≠  
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Iterative Conditional Modes (ICM)  (Besag, 
1986): 

Iteratively maximize components of the 
posterior distribution (or the likelihood 
function) 

 

Variations: 

Additional E-steps can be mixed into the series 
of M-steps.  For example, if k = 2, a modified 
ECM scheme could be  

(E – M1 – E – M2) – (E – M1 – E – M2) 

instead of  

(E – M1 – M2) – (E – M1 – M2) 

Another modification is to skip E-steps, giving 
for example, 

(E – M1 – M2 – M1 – M2) – (E – M1 – M2 – M1 – M2) 

Note that this sort of scheme usually isn’t 
particularly advantageous, though if 
calculating the E-step is slow, this can lead to 
speed ups. 
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EM Gradient Algorithm 

Even with careful thinking, the M-step may not 
be feasible, even with extensions like ECM. 

As all that is really needed is a GEM, what we 
really need is an approximation to the 
maximizer. 

One approach for doing this is one Newton-
Raphson step on Q.  This given 

Gradient M-step: Set 
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The second form holds since as shown last time 

( ) ( )10logD g Y D Qθ θ θ=  

Since NR isn’t a ascent algorithm, you need to 
watch things a bit, but it is possible to show than 
when you get close to θ̂ , the EM gradient 
algorithm satisfies the ascent condition 

( ) ( )1n nL Lθ θ+ ≥ . 
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This idea can also be combined with ECM, e.g., 
run EM Gradient on a couple of the ( )n

jθ ’s and 
regular ECM on the rest. 

Another advantage to this combination, is that NR 
often works better on smaller parameter spaces 
(more likely to have an ascent algorithm) 

Note that this idea can be used with regular NR.  
There is nothing special about doing it on the Q 
function. 

 

Bayesian EM 

Let ( )π θ  be the prior distribution on the 
parameter θ .  Then the posterior density  

( ) ( ) ( )Y g Yπ θ θ π θ∝  

So finding the posterior mode is equivalent to 
maximizing 

( ) ( )log logg Y θ π θ+  

Assuming that a nice complete data model 
( )f X θ  can be found, the Bayesian version of 

EM involves 
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Bayesian E-step: 

( ) ( ) ( )
( ) ( )

log log ,

log , log

n n

n

Q E f X Y

E f X Y

θ θ θ π θ θ

θ θ π θ

� �= +� �

� �= +� �

 

Bayesian M-step: Set 

( )1 arg supn nQθ θ θ+ =  

By similar arguments as for basic EM, the 
sequence { }nθ  leads to an increasing sequence 
of the log posteriors, converges to a stationary 
point of the log posterior, etc. 

One potential problem is that the log prior 
often complicates the M-step. 

Usually things only work nicely when the prior 
is conjugate to the complete data model. 

A prior is conjugate if the posterior distribution 
is a member of the same family of distributions 
as the prior 
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Example: 

Complete data: ( )~ Bin ,X n p  

( ) ( )1
n xxn

f x p p p
x

−� 	
= −
 �
� 

 

Prior: ( )~ Beta ,p α β  

( ) ( ) 11 1p p p
βαπ −−∝ −  

Posterior: 

( ) ( ) 11 1
n xxp x p p βαπ − + −+ −∝ −  

( )~ Beta ,p x x n xα β+ − +  

E-step: 

( ) ( )
( ) ( )
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So we need , nE X Y p� �� � , where Y is the 
observed data. 
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M-step: 

1
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Missing Information Principle 

Remember from last time 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

,

log log log ,

log log log ,

f X g Y h Z Y

f X g Y h Z Y
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This implies 

( ) ( ) ( )( )2 2 2log log log ,D g Y D f X D h Z Yθ θ θ− = − − −
Taking conditional expectations gives 

( ) ( ) ( )O OC OMI Y I Y I Yθ θ θ= −  

Observed Information  

 = Complete Information – Missing  
         Information 
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( ) ( )20
OCI Y D Qθ θ θ= −  

( ) ( )20
OMI Y D Hθ θ θ= −  

 

Convergence of EM 

EM can be considered as an iterative update 
scheme where 

( )1n nMθ θ+ =  

It has shown (Dempster, Laird, and Rubin, 
1977) that EM has linear convergence and that 

1 2

2

ˆ
lim

ˆ
n

n
n

θ θ
λ

θ θ
+

→∞

−
=

−
 

where λ is the largest eigenvalue of ( )̂DM θ . 

Note that the mapping ( )1n nMθ θ+ =  may be 
difficult to determine in a nice form so the 
Jacobian can be calculated.  However, ( )̂DM θ  

can be tied in with the missing information 
principle as follows. 
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Theorem: 

If ( )10
1 0n nD Q θ θ+ = , then  

( ) ( ) ( )1ˆ ˆ ˆ
OM OCDM I Y I Yθ θ θ−=  

Proof: 

( )( )10 0D Q M θ θ =  

Applying the chain rule 

( ) ( )( ) ( )( )20 11 0DM D Q M D Q Mθ θ θ θ θ+ =  

which implies 

 ( ) ( ) ( )20 11ˆ ˆ ˆ ˆ ˆ 0DM D Q D Qθ θ θ θ θ+ =  (*) 

Then 

( ) ( ) ( )log ' 'g Y Q Hθ θ θ θ θ= −  

implies 

( ) ( ) ( )11 11 20D Q D H D Hθ θ θ θ θ θ= = −  

So plugging this into (*) gives 

( ) ( ) ( )20 20ˆ ˆ ˆ ˆ ˆ 0DM D Q D Hθ θ θ θ θ− =  
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which then gives the result. 

 

One way of thinking of this, particularly for the 
scalar parameter case, is the rate of 
convergence is the fraction of information that 
is missing. 

This implies for fast convergence, you want 
( )OMI Yθ  to be “small” and ( )OCI Yθ  to be “big” 

So for the genetics example, 

( )
( )

4 4 120 2 3
2 2

, '
'

' 1 '

E X y y y y
D Q

λ
λ λ

λ λ

� � + +� �= − −
−

 

( )
( )

4 420 4
2 2

, '
'

' 2 '

E X y y
D H

λ
λ λ

λ λ

� �� �= − +
+

 

Plugging in λ̂  = 0.626821 gives 

( ) ( ) ( )1ˆ ˆ ˆ 0.132778OM OCDM I Y I Yλ λ λ−= =  
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If we look at the sequence of iterations 
 

Iteration 
nλ  ˆ

nλ λ−  1
ˆ ˆ/n nλ λ λ λ+ − −  

0 0.5 0.126821 0.1465 

1 0.608247423 0.018574 0.1346 

2 0.624321050 0.002500 0.1330 

3 0.626488879 0.000333 0.1327 

4 0.626777322 0.000044 0.1322 

5 0.626815632 0.000006 0.1287 

6 0.626820719  - 

7 0.626821394  - 

This doesn’t quite match the table in DLR. 

In the scalar parameter case 

( ) ( )

( ) ( )

ˆVar
ˆVar

1
1ˆ ˆVar Var

1

X
Y

X X

θ
θ

λ

θ θ
λ

=
−

= +
−
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Calculating the information matrix 

Louis’ formula (Louis, 1982) 

( ) ( )
( )

( ) ( )( )
( ) ( )

2

2

log

log

log log

log log

O

T

T

I D g Y

E D f X Y

E D f X D f X Y

E D f X Y E D f X Y

θ θ

θ

θ θ

θ θ

= −

� �= −� �

� �−
� �� �

� � � �+ � � � �
This can be though of in terms of the missing 
information principle.  The first term in the 
sum is the complete information and the last 
two terms are the missing information. 

Note that the third term is 0 when evaluated at 
the MLE. 
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SEM algorithm (Meng and Rubin, 1991) 

Instead of calculating the matrices above 
exactly, the idea is to use the iterates of the EM 
sequences to numerically approximately them. 

Their idea is based on the missing information 
principle and  

( ) ( ) ( )1ˆ ˆ ˆ
OM OCDM I Y I Yθ θ θ−=  

Combining the two gives 

( )
( )

1

O OC OM

OM OC OC

OC

I I I

I I I I

I DM I

−

= −

= −

= −

 

Thus, if we can figure out DM and OCI , we can 
get the observed information in the data. 


