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Calculating the information matrix 

1) Calculate  directly 

( ) ( )2 logOI D g Yθ θ= −  

Usually not feasible if you’re forced to run EM 
instead of, say, Newton-Raphson. 

2) Use the fact 

( ) ( )10logD g Y D Qθ θ θ=  

and differentiate this. 

3) Use the fact 

( ) ( )
( ) ( )
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Usually not useful for calculation purposes.  
When this can be used for getting ( )OI θ , you 
can probably do 1) directly.  This fact is more 
useful for doing proofs about EM. 



2 

4) Louis’ formula (Louis, 1982) 

( ) ( )
( )

( ) ( )( )
( ) ( )

2

2

log

log

log log

log log

O

T

T

I D g Y

E D f X Y

E D f X D f X Y

E D f X Y E D f X Y

θ θ

θ

θ θ

θ θ

= −

� �= −� �

� �−
� �� �

� � � �+ � � � �
 

This can be though of in terms of the missing 
information principle.  The first term in the 
sum is the complete information and the last 
two terms are the missing information. 

The second term in the sum might be a bit 
difficult as it will involve products of the 
sufficient statistics. 

Note that the third term is 0 when evaluated at 
the MLE. 

There is a simplification which sometimes 
helps as the last two terms are just 
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so Louis’ formula is sometimes presented as 

( ) ( )
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Example: Genetics 
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So 
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Plugging in gives  

( )
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so 

( )ˆI λ  = 435.3 – 57.8 = 377.5 
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5) SEM algorithm (Meng and Rubin, 1991) 

Their idea is based on the missing information 
principle and the fact 

( ) ( ) ( )1ˆ ˆ ˆ
OM OCDM I Y I Yθ θ θ−=  

Combining the two gives 

( )
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Thus, if we can figure out DM and OCI , we can 
get the observed information in the data. 

In the genetics example discussed last time, we 
saw that using iterates from EM we could get a 
reasonable guess for DM, at least in a single 
parameter problem. 

Instead of calculating the matrices above 
exactly, the idea is to use the iterates of the EM 
sequences to approximately numerically, DM. 
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So the following scheme can be used to get t
ijr . 

1) Fix i = 1 and set ( ) ( )1̂
ˆ, , , ,t t

i kiθ θ θ θ= � �  

 Evaluate ( ) ( )( )1t ti M iθ θ+ =�  

2) Form 
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 for j = 1, … , k. 

3) Repeat steps 1 and 2 for i = 2, … , k. 

To implement this algorithm, k evaluations of 
the mapping M are required. 
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Doing this for each EM iteration leads to the 
sequence { 1

ijr , 2
ijr , …},. which can be stopped at t* 

when the sequence stablizes.  Note that t* may 
not be the same for each (i, j ) combination. 

Also for numerical reasons the sequence may 
appear to become unstablized at some point.  
We saw this last time with the genetics example 
 

Iteration 
nλ  ˆ

nλ λ−  ( ) ( )1 /ˆ ˆ
n nλ λ λ λ+ − −  

0 0.5 0.126821 0.1465 

1 0.608247423 0.018574 0.1346 

2 0.624321050 0.002500 0.1330 

3 0.626488879 0.000333 0.1327 

4 0.626777322 0.000044 0.1322 

5 0.626815632 0.000006 0.1287 

6 0.626820719  0.1009 

7 0.626821394  -0.1831 

This is an artifact of the numerical precision of 
computer code.  When calculating the errors at 
each iteration you lose significant digits. 

However if you had infinite precision, the 
sequence would converge. 
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So for deciding when the t
ijr  have converged, 

you need a different convergence criterion. 

One suggestion I’ve seen (though I can’t 
remember where) is if your convergence 
criterion for EM is stop when 

1n n TOLθ θ+ − <  

then use the SEM stopping criterion 
1t t

ij ijr r TOL+ − <  

One way to think of this is to go for only half as 
many digits of accuracy. 

Also look to see when the sequence 1t t
ij ijr r+ −  

starts to increase (as it probably will). 

One potential problem with this algorithm, is 
that this estimate OI  is not guaranteed to be 
symmetric and thus 1

OV I −=  will not be either. 

Meng and Rubin suggest replacing V with 
( )1

2
TV V+ . 

Another idea would be to replace OI  with 

( )1
2

T
O OI I+ . 
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Asymmetry in OI  and V can be used to look for 
problems in SEM. 

 

Note that you do not need to iterate the SEM 
algorithm as I’ve described,  You can run 
through steps 1) through 3) only once.  
However you need to think about the values t

iθ  
you use for each i. 

 

SEM when θ is a single value 

You do not need to run the extra EM steps to 
get ( )1t iθ +�  as ( )1t iθ +�  = 1tθ + . 

So for this case, you get SEM for free.  However 
for the multiparameter case, you do need to 
run the extra EM steps. 
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Genetics Example: 

As shown last time the true value of DM = 
0.1327798.  Plugging into 

( )
( )1 0.1327798 435.3

377.501

O OCI I DM I= −

= −
=

 

The same answer as Louis’ method. 

If we estimate DM with 0.132739278 (where 
1t t

ij ijr r+ −  starts to increase, we get 

( )
( )1 0.1327392 435.3

377.519

O OCI I DM I= −

= −
=
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If we look at the standard error of λ̂ , we get 

( )̂ 0.0514684SE λ =  
 

Iteration ( )̂SEMSE λ  

0 0.0518792 
1 0.0515231 
2 0.0514753 
3 0.0514672 
4 0.0514524 
5 0.0513471 
6 0.0505479 

 

Cyclic Coordinate Ascent: 

Last time I briefly discussed optimizing along 
each coordinate in turn (ICM, ECM).  In general 
the algorithm can be thought of as 

Step 1): Find 1t  which maximizes 

( )1L teθ +  

where ie  is the vector whose ith coordinate is 1 
and the rest are 0. 
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Step i):  Find it  which maximizes 

( )1

1

i
j j ij

L t e teθ −

=
+ +  

When all k coordinates have been updated, one 
iteration is complete. 

It can be shown that cyclic coordinate schemes 
will converge as long as a maximum is 
determined in each step. 

However that convergence might be to saddle 
point, instead of a local maximum. 

None of the schemes I’ve discussed so far are 
guaranteed to converge to the global maximum, 
unless strong assumptions can be made of the 
function being optimized, such as the function 
is convex over its parameter space 

Problem 13.7 in Lange discusses a multivariate 
normal case where the Likelihood has two 
modes and a saddle point. 


