STAT 214: CAUSAL INFERENCE, 2002
HiNTS FOR USING SPLUS
ELIZABETH STUART

This is designed to give a brief overview of Splus and some of the main
commands you will need to know. The following are other sources for more
in-depth information:

1. Online help: From the Splus prompt, type help.start(). A help screen
will come up. If you know the command you need help with, you can
also type help(commandname). On Windows SPlus, there is a help
menu at the top of the screen with extensive documentation.

2. User’s Guide: A User’s Guide can be downloaded from the S-Plus web
site:
http://www.insightful.com/support/documentation.asp

3. Online quick overview:
www.utstat.toronto.edu/splus/contents.html.

4. Another source of manuals and books:
www.umich.edu/~cscar/splus/splusintro.html.

Now, a brief overview of some important SPlus information.
1. How to access Splus

e From the Statistics department server (hustat.stat.harvard.edu),
type Splus at the Unix prompt. An Splus command line (>) will
come up.

e From ice.harvard.edu, type Splus at the Unix prompt. An Splus
command line (>) will come up.

e To quit Splus when running it on a unix machine, type q() at
the command line.

e Windows SPlus is also available on some machines. Make sure it
has the command line option so you can write programs and run
them.

2. How to run an Splus program

e You can type commands right at the command line, one at a
time. The result will show on the screen automatically.

e You can write a series of commands as a text file and run it as
a program (this method is highly recommended). There are two
ways to do this. The first is to type source(“infile.txt”) at the
command line, where infile.txt is the name of the file that con-
tains the commands. The second option is to run the program as a
batch job. This also enables you to leave it running even if you log
out of the computer. To do this, type Splus BATCH infile.txt
outfile.txt at the Unix prompt on either hustat.stat or ice. in-
file.txt should contain the program as a series of commands, and
the output of the program will be printed to outfile.txt. When
running programs in this way, you must specify what you want
printed out by using the print command: print(“This is what
I want to print”) or print(objectname). Within a program,
you can make comments by typing # at the beginning of each
line.

3. Basics of SPlus

e The main thing to know about Splus is that everything is done
as vectors. So if x and y are both vectors of length n, if you type
z + y the result will be a vector of length n, where each element
is the sum of the corresponding elements of x and y. Realizing
this is important as it helps minimize loops in Splus, which are
very slow.

e There are 2 “assignment methods”. Either z <- x + y or z_x+y
will assign the vector sum of x and y to a vector named z.

e Note: To do a dot product multiplication of 2 vectors, you must
type vector1%x*%vector2. Typing vectorl*vector2 will result
in a vector of the same length as vectorl and vector2, where each
element is the product of the corresponding elements of vectorl
and vector2.

4. Reading in data

e To enter a vector of values manually: data <- ¢(1,2,3,4,5)
e Toread a text file that contains a data set: data <- read.table(“datafile.txt”,
header=T). Header=T is used if the .txt file contains a row
at the top giving the variable names. Otherwise use header=F.
Make sure the data file (“datafile.txt”) is in the same directory
as you are running Splus from.

5. Making new variables (Some variables need to be initialized in these
ways before they can be referenced)

e Create a new vector of zeros of length n: new.vector <- rep(0,
n)

e Create a new matrix of zeros of size n by m: new.matrix <-
matrix(0, nrow=n, ncol=m)

6. Loops
e For loops have the following form: for (i in 1:10) {commands
here}
e If loops have the following form: if (a == 5) { commands

here } else if (a <= 3) { other commands here } else {
and other commands here }

e While loops have the following form: while (a != 0) { com-
mands here } . The != means “not equal”. Be careful not to
make infinite while loops!

7. Printing
e To print a sentence: print(“This is the sentence I want to
print.”)

e To print an object (value, vector, matrix, etc.): print(objectname)
8. Graphics

e First, note that graphics cannot be done from a program. They
must be done from the command line. Graphics will not print to
the output file when batch jobs are run.

e Before making any graphics, a graphics window must be opened:
motif(). This is not necessary in Windows Splus, but if you want
to have more than 1 graphics window at a time open in Windows
Splus, you can use win.graph() to open a new graphics window.

e To close a graphics window: dev.off()

e To make a histogram of my.vector: hist(my.vector, main=“Put
main title here”)

e To do a plot of a single vector: plot(vectorl)

e To do a scatterplot of 2 vectors: plot(vectorl, vector2)

9. Generating random draws from various distributions

e Splus has a number of built in functions for generating draws,
calculating the density, and calculating tail probabilities for stan-
dard distributions.

e Normal: dnorm(x, mean=0, sd=1) would give the density of
the value x (or vector of values x), from a normal with mean 0
and standard deviation 1. rnorm(n, mean=0, sd=1) will give
n draws from a normal distribution with mean 0 and standard
deviation 1. Type help(rnorm) for more information on these.

e For other distributions it is a similar form: dbin, dbeta, dgamma,
dchisq, etc. Look at the help files for more information on these.

e To sample from a given set of values: sample(x, 1000, re-
place=T). This will generate 1000 values from the values in x,
with replacement, where each value in x has the same probability
of being sampled. You can also specify these probabilities if they
are unequal. See help(sample) for more information.

10. Other useful statistics functions

e This is not an exhaustive list of the functions you will need to
use, but here are some useful ones. Use the Splus help options to
search for others you need.

e Some usual (and I believe self-explanatory functions): mean(vector),
var(vector), sqrt(object).

e Cholesky decomposition of a matrix: chol(matrix)

e T-tests: t.test(vectorl, vector2, paired=F) will run an un-
paired t-test of the mean of vectorl and the mean of vector2. You
can also do a test of whether the mean of a vector is equal to a
certain value. Type help(t.test) for more information.

o F-tests: var.test(vectorl, vector2)

e Simple linear regression: reg <- lm(z ~ x+y, data=mydata)
runs a simple linear regression of z on x and y, using the data
frame mydata. The output is sent to the object reg. To look at
a summary of the output, type summary(reg). You can also
access objects like the coefficients directly by using reg$coef.
reg$fit will give the fitted values of the regression. names(reg)

will show a list of the regression objects you can access directly.
Again, look at help(lm) for more information on that.

e Logistic regression: logitreg <- glm(y ~ x, family=binomial,
data=mydata) will run a logistic regression (binomial family
with logit link) of y on x. The output and other commands are
similar to Im. See help(glm) for more information. Information
on running other general linear models is also given there.

11. Writing function in Splus

e You may find it useful to occasionally write your own functions
in SPlus. Here is the syntax for that: myfunction <- func-
tion(arguments) { commands here, ending with return(output)
}. The arguments are whatever you need to send to the function
(there can be multiple arguments, separated by commas, and
arguments could be vectors or any other objects). The line re-
turn(output) will return whatever output is...you should put
whatever you want the output of the function to be where the
word output is above.

